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Outline

I Multiscale turbulence – instabilities drive transport at scales of
I ion gyroradius ρth,i (ITG)
I electron gyroradius ρth,e (ETG)

I Experimentally relevant transport is driven at both long (ρth,i) and short
(ρth,e) wavelengths

I Recent work shows that cross-scale interactions can be significant in
determining the transport level in multiscale turbulence

In this talk
I Brief introduction to theory of scale-separated multiscale turbulence

Hardman et al. (2019)
I A separated ρth,i scale – the “ion scale” (IS)
I A separated ρth,e scale – the “electron scale” (ES)
I (me/mi)

1/2 → 0

I Simulations show that IS turbulence can stabilise the ETG instability

I The suppression mechanism is novel: parallel-to-the-field-line shear in the
ρth,i scale E×B drift stabilises ρth,e scale instabilities
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Introduction: Multiscale turbulence

I simulation evidence where Qe ∼ 10QegB ∼ (?)QigB e.g. Jenko and Dorland

(2002)

I recent experimental evidence on NSTX Ren et al. (2017)

I Fig 2 from Maeyama et al. (2015):

(a) β = 0.04% (b) β = 2.0%

I Realistic (me/mi)
1/2 multiscale simulations are extremely expensive.

Examples in Maeyama et al. (2017); Howard et al. (2016); Bonanomi et al.
(2018).

3 / 27



The asymptotic approach to studying multiscale turbulence

I Local δf gyrokinetics describes turbulence in a flux tube in the limit ρ∗ → 0

I Scale-separated, coupled IS-ES turbulence can be described with nested, flux

tubes in the limit (me/mi)
1/2 → 0

I Coupling is similar to that of coupling between turbulence and transport (cf.
Barnes et al. (2010))
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The asymptotic approach to studying multiscale turbulence

I Large-scale gradients and flows drive or suppress instabilities

I Small-scale fluctuations drive fluxes that relax the large-scale gradients
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Separation between transport and local δf turbulence

log

log

I Scale separation: ρ∗ = ρth/a→ 0 ⇒ f = F + δf

I Statistical periodicity: 〈δf〉turb = 0

I Gyro average: 〈·〉ϑ
I Orderings:

∇F ∼
F

a
, ∇⊥δf ∼

δf

ρth
, ∇‖δf ∼

δf

a

∂F

∂t
∼ ρ∗3ΩF,

∂δf

∂t
∼
vth

a
δf ∼ ρ∗Ωδf

δf ∼ ρ∗F
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Separation between transport and local δf turbulence

The gyrokinetic equation for h = δf + (Zeφ/T )F0:

∂h

∂t
+ v‖b · ∇θ

∂h

∂θ
+ (vM + vE) · ∇h+ vE · ∇F0 =

ZeF0

T

∂ϕ

∂t
, (1)

where,

ϕ = 〈φ〉ϑ, vE =
c

B
b×∇ϕ. (2)

Closed by quasi-neutrality,

∑
ν

Zν

∫
d3v|rhν =

∑
ν

Z2
νenν

Tν
φ(r). (3)

I Electrostatic approximation

I Zero equilibrium toroidal rotation

6 / 27



Separation between transport and local δf turbulence

The gyrokinetic equation for h = δf + (Zeφ/T )F0:

∂h

∂t
+ v‖b · ∇θ
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ZeF0

T
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, (1)

where,

ϕ = 〈φ〉ϑ, vE =
c

B
b×∇ϕ. (2)

Closed by quasi-neutrality,

∑
ν

Zν

∫
d3v|rhν =

∑
ν

Z2
νenν

Tν
φ(r). (3)

Transport equations have the form

3

2

∂p

∂t
+

1

V ′
∂

∂ψ

(
V ′Q

)
= S+ + S− (4)

I Divergence of the flux Q relaxes ∂p/∂ψ – Q = QTB +QNC +QC

I QTB ∼
〈∫
d3v|r ε vEδf

〉turb
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Separating IS and ES Turbulence

log

log

I Scale separation: ρth,e/ρth,i ∼ vth,i/vth,e ∼ (me/mi)
1/2 → 0, ⇒ δf = δf + δ̃f

I ES statistical periodicity:
〈
δ̃f
〉ES

= 0

I Orderings:

∇⊥δf ∼
δf

ρth,i
, ∇⊥δ̃f ∼

δ̃f

ρth,e

∂δf

∂t
∼
vth,i

a
δf,

∂δ̃f

∂t
∼
vth,e

a
δ̃f.

∇‖δf ∼ a−1δf, ∇‖δ̃f ∼ a−1δ̃f .
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Separating IS and ES Turbulence
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Separating IS and ES Turbulence

The gyrokinetic equation for h = δf + (Zeφ/T )F0:

∂h

∂t
+ v‖b · ∇θ

∂h

∂θ
+ (vM + vE) · ∇h+ vE · ∇F0 =

ZeF0

T

∂ϕ

∂t
, (5)

where,

ϕ = 〈φ〉ϑ, vE =
c

B
b×∇ϕ. (6)

Closed by quasi-neutrality,

∑
ν

Zν

∫
d3v|rhν =

∑
ν

Z2
νenν

Tν
φ(r). (7)

I h→ h+ h̃, φ→ φ+ φ̃

I ∇⊥ → ∇s +∇f , ∇f ∼ ρth,e−1, ∇s ∼ ρth,i−1

I ∂t → ∂ts + ∂tf , ∂tf ∼ vth,e/a, ∂ts ∼ vth,i/a
I ES average 〈·〉ES extracts long wavelength – IS – equations

I Short wavelength – ES – equations are the residual

I Cross-scale interactions arise from vE · ∇h
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Separating IS and ES Turbulence – The Coupled Equations

I IS equations.

∂hi

∂t
+ v‖b · ∇θ

∂hi

∂θ
+ (vMi + vEi ) · ∇hi + vEi · ∇F0i =

ZieF0i

Ti

∂ϕi
∂t

, (8)

∂he

∂t
+
〈
vMe · ∇α

〉o ∂he
∂α

+
〈
vEe ·

(
∇he +∇F0e

)〉o
+∇ ·

〈〈 c
B
h̃eṽ

E
e

〉ES
〉o

= −
eF0e

Te

∂ 〈ϕe〉
o

∂t
,

(9)∫
d3v|r(Zihi − he) =

(
eZ2
i ni

Ti
+
ene

Te

)
φ, (10)

I ES equations, with the new advection and drive terms

∂h̃e

∂t
+v‖b·∇θ

∂h̃e

∂θ
+(vMe +ṽEe +vEe )·∇h̃e+ṽEe ·(∇he+∇F0e) = −

eF0e

Te

∂ϕ̃e

∂t
. (11)

−
∫
d3v|rh̃e =

(
eZ2
i ni

Ti
+
ene

Te

)
φ̃, (12)
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Separating IS and ES Turbulence – The Coupled Equations

I IS equations. Leading-order cross-scale terms are small by . (me/mi)
1/2
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Separating IS and ES Turbulence – ES equations in terms of ge

I Written in terms of ge = 〈δf〉ϑ the ES gyrokinetic equation is

(
∂

∂t
+ vEe · ∇

)
g̃e + v‖b · ∇θ

∂g̃e

∂θ
+(vMe + ṽEe ) · ∇g̃e

+ṽEe · (∇F0e +∇ge) =
eF0e

Te

(
v‖b · ∇θ

∂ϕ̃e

∂θ
+ vMe · ∇ϕ̃e

)
,

(13)

I with ES quasi-neutrality∫
d3v|r

(
g̃e(R) +

eF0e

Te

(
φ̃(r)− ϕ̃e(R)

))
= −

Zieφ̃(r)

Ti
n0e, (14)

I ṽEe ∼ vEe and (r− r0) · ∇vEe ∼ (ρth,e/ρth,i)v
E
e � vEe

I ⇒ perpendicular-to-the-field shear small in the limit (me/mi)
1/2 → 0

I ⇒ In each ES flux tube vEe does not vary x or y – but does vary in poloidal
angle θ

I The constant piece of vEe may be removed by a toroidal rotation

I ⇒ the θ variation in vEe – parallel-to-the-field shear – is relevant

11 / 27



Physical picture for the effect of parallel-to-the-field shear in vEe
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Outline: Effect of Cross-scale Interaction on the ETG Instability

I The coupled equations capture the O(1) effects of IS turbulence on ES
fluctuations

I We pick Cyclone Base Case like (CBC) parameters where there is a
separation of scales:

10−1 100 101 102

kyρth,i

10−2

10−1

100

γ /(vth,i/a) at θ̂0 = 0
a/LTi

= 2.3

a/LTi
= 1.38

AI

−2 0 2
θ̂0

0.25

0.50

0.75

K
y
ρ

th
,e

γ/(vth,e/a)

-0.063
-0.041
-0.019
0.004
0.026
0.049
0.071
0.094

I Collisions create a stable gap between the ITG and ETG modes in ky

I We assume that this level collisional dissipation creates a gap in the nonlinear
amplitude spectrum
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Physical picture for the definition of θ̂0

I Magnetic shear rotates the wave
fronts of the mode w.r.t. the minor
radial direction as the view of the
mode rotates in ζ

I There is only one θ where the radial
wave number kr = 0

I θ where kr = 0 is θ̂0

I θ̂0 = 0 is the outboard midplane
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y
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th
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γ/(vth,e/a)
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0.071
0.094
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Outline: Effect of Cross-scale Interaction on the ETG Instability

I The coupled equations capture the O(1) effects of IS turbulence on ES
fluctuations

I We pick Cyclone Base Case like (CBC) parameters where there is a
separation of scales:
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I We simulate the IS turbulence to obtain a sample of vEe and ∇ge
I Strongly driven ETG (a/LTe = 2.3) is weakly suppressed by weakly driven

(a/LTi
= 1.38) IS turbulence

I Strongly driven ETG (a/LTe = 2.3) is stabilised by strongly driven
(a/LTi

= 2.3) IS turbulence
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Sampling IS Turbulence with a/LTi = 1.38

0 2000 4000 6000
ts/(a/vth,i)

0

5

10

〈 φ2〉xs,ys,θ/(Tρ∗i /e)
2 for a/LTi

= 1.38

−50 0 50
xs/ρth,i

−50

0

50

y s
/ρ

th
,i

φ/(Tρ∗i /e) at θ = 0

−6

−4

−2

0

2

4

6

I Saturate IS
turbulence

I Calculate ∇ge
I Calculate vEe
I At 6 IS ts times

(blue dashes)

I At 6 radial (xs) × 5
binormal (ys) IS
positions (crosses)
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Simulations: Modification of ES linear physics: CBC a/LTi = 1.38

Top Right: No IS gradients.

Below: IS gradients from different IS
(xs, ys) locations

Weak suppression
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Simulations: Modification of ES linear physics: CBC a/LTi = 1.38

Top Right: No IS gradients.

Below: average ETG growth rate across
all sampled IS (xs, ys) locations and ts
times

Weak suppression
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Sampling IS Turbulence with a/LTi = 2.3

0 500 1000 1500
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I At 6 IS ts times

(blue dashes)

I At 6 radial (xs) × 5
binormal (ys) IS
positions (crosses)
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Simulations: modification of ES linear physics: CBC a/LTi = 2.3

Top Right: No IS gradients.

Below: IS gradients from different IS
(xs, ys) locations

Strong suppression!
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Simulations: Modification of ES linear physics: CBC a/LTi = 2.3

Top Right: No IS gradients.

Below: average ETG growth rate across
all sampled IS (xs, ys) locations and ts
times

Strong suppression!
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Simulations: Modification of ES linear physics: CBC a/LTi = 2.3

Top Right: No IS gradients.

Below: average ETG growth rate across
all sampled IS (xs, ys) locations and ts
times

INCLUDING ONLY ∇ge (with vEe = 0)

Weak suppression! −2 0 2
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Simulations: Modification of ES linear physics: CBC a/LTi = 2.3

Top Right: No IS gradients.

Below: average ETG growth rate across
all sampled IS (xs, ys) locations and ts
times

INCLUDING ONLY vEe (with ∇ge=0)
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Simulations: A simple model of parallel-to-the-field shear in vEe

I Simplest possible form for vEe with
local parallel-to-the-field shear
(consistent with flux tube ‖ b.c.
Beer et al. (1995))

I (16) leads to vEe · kf with linear
variation e.g. (15) for Kx = 0 (and
our parameters)

I Maximum ETG growth rate
γmax(Ê) shows suppression for all

Ê 6= 0

I ⇒ Qualitative explanation of ETG
behaviour in the presence of IS
turbulence

vEe · kf = ω̂Eθ, (15)

∂φ

∂ys

∣∣∣
xs

= −Ê,
∂φ

∂xs

∣∣∣
ys

= −ŝθÊ, (16)

ω̂E =
ŝ

2
(Kyρth,e)

(
Ê

T/ea

)(vth,e
a

)
.

(17)
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Simulations: A simple model of parallel-to-the-field shear in vEe

I Expect suppression when

ω̂E ≈ γmax(Ê = 0) ' 0.1vth,e/a

I Consider

Ê/(Te/ea) = 0.5 γmax ≈
γmax(Ê = 0)

2

I ŝ/2 = 0.4, and typical Kyρth,e ∼ 0.5

⇒ ω̂E ≈ 0.1
vth,e

a

I ⇒ Effect of vEe matches expectation
for the effect of a flow shear

vEe · kf = ω̂Eθ, (15)

∂φ

∂ys

∣∣∣
xs

= −Ê,
∂φ

∂xs

∣∣∣
ys

= −ŝθÊ, (16)

ω̂E =
ŝ

2
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(
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)
.

(17)

−1 0 1
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A criterion for when to expect ETG suppression

I We can expect parallel-to-the-field shear stabilisation of ETG when

γETG . ω̂E ∼ kETG
∆vE

∆θ
∼ kETGvE

I A quasilinear estimate for vE gives

vE ∼
γITG

kITG

I ⇒ IS turbulence suppresses ES instabilities when

γETG

kETG
.
γITG

kITG

I Consistent with observations made in Creely et al. (2018a,b)
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Conclusions

I We have derived coupled, scale-separated equations for IS and ES turbulence.

I The model is valid when (me/mi)
1/2 → 0; with space and time separation; no

other small parameters

I This model describes the suppression of the ETG instability by ion gyroradius
scale turbulence.

I The primary mechanism responsible for the suppression is parallel-to-the-field
variation in the ρth,i-scale E×B drift vEe .

I The level of suppression appears to be controlled by the relative sizes of the
drives of instability with suppression when

γETG

kETG
.
γITG

kITG
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Questions for Future Work

I When is the effect of ∇ge dominant? Near marginal stability?

I Can we retain the effect of ES turbulence on IS fluctuations by taking other
parameters to be small? Distance to marginal stability?

I What is the perpendicular scale of an ETG streamer? Dorland et al. (2000);
Jenko et al. (2000); Jenko and Dorland (2002); Guttenfelder and Candy
(2011)

I Is it possible to enforce time scale separation if ETG turbulence saturates
slowly? Colyer et al. (2017); Nakata et al. (2010)

I What is the effect of IS turbulence on nonlinear saturation of ETG
turbulence?

I What changes in this picture with electromagnetic fluctuations?
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Simulations: A simple model of parallel-to-the-field shear in vEe

Top Right: No IS gradients.

Below: ETG growth rate with model vEe ;

(left) Ê = 0.5T/ea (right) Ê = 1.0T/ea

The peak γmax reduces in size, and shifts
in θ̂0 and Ky with increasing shear.

Reminiscent of the effect of
perpendicular-to-the-field flow shear
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Simulations: A simple model of parallel-to-be-field shear in vEe

Top Right: ETG growth rate γ(Ê) for

Kyρth,e = 0.57, θ̂0 = 0.0.

Below Left: corresponding eigenmodes
Below Right: corresponding drift
coefficients
Strong suppression!
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Electrons at IS
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The effect of ∇ge – Cross-scale interation near marginal stability

I ITG turbulence driven near marginal with a/LTi
= a/LTe = 1.38

I ETG driven with a/LTe = 1.38, a/Lne = 0.733

I (Black) γmax calculated with cross-scale terms ∇ge and vE

I (Red) γmax calculated with only modifications to

a

Lne

→
a

Lne

−
1

ne

dne

dx

a

LTe

→
a

LTe

−
1

Te

dTe

dx
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