# Theory and modeling of alpha-driven TAEs in high-magnetic-field devices E.A. Tolman<sup>1</sup>, P.J. Catto<sup>1</sup>, N.F. Loureiro<sup>1</sup>, P. Rodrigues<sup>2</sup>, J.W. Hughes<sup>1</sup>, and E.S. Marmar<sup>1</sup>

<sup>1</sup>Plasma Science and Fusion Center, MIT, Cambridge, MA, USA
 <sup>2</sup>Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal





# Outline

- Alpha particle physics of high field tokamaks
  - Introduction to high field tokamaks
  - Introduction to TAEs
- TAEs in high field tokamaks
  - Reduction of instability at same performance
- Determinants of TAE transport
  - Development of drift kinetic theory of transport
  - TAE amplitude that causes alpha depletion







# Alpha particle physics of high field devices







## Magnetic field and size determine DT fusion power $P_f$

- The goal of fusion research is a device that makes significant fusion power  $P_f$
- In DT devices, fusion power is determined by pressure and volume:

$$P_f \sim \langle nT \rangle^2$$

- $\beta^2$  is determined by plasma physics
- $B_0$  and V are selected by device designers



 $\beta^2 V \sim \beta^2 B_0^4 V$ 



# SPARC to ARC pathway exploits $B_0$ dependence of $P_f$

$$P_f \sim \langle nT$$

- Historically, magnet technology limited  $B_0$ 
  - Large, expensive devices necessary
- New HTS technology allows higher  $B_0$ and smaller, faster, cheaper devices
- SPARC is a small, high field HTS device with significant fusion power
- Expected DT operation ~2025
- High field DT reactor (ARC) will follow SPARC



 $\rangle^2 V \sim \beta^2 B_0^4 V$ 

|          | -            |      |
|----------|--------------|------|
| Quantity | ITER         | SPAR |
| $R_0$    | 6.2 <i>m</i> | 1.65 |
| $B_0$    | ~ 5.3 T      | ~ 1  |
| $P_f$    | 500          | 50-  |
| <b>,</b> | MW           | M    |









# Alpha physics is novel part of next-generation DT tokamaks

## • SPARC will be among first to produce large "amount" of alpha particles

| $n_e = 2n_D = 2n_T$               | $T_i \sim T_e$ | $n_{\alpha}$ " $T_{\alpha}$ "  |                                                                            | $n_{\alpha}T_{\alpha}/(2n_{e}T_{\alpha})$ |  |
|-----------------------------------|----------------|--------------------------------|----------------------------------------------------------------------------|-------------------------------------------|--|
|                                   |                |                                | [Calculated using average value of $v^2$ across slowing down distribution] |                                           |  |
| $\sim 5 \times 10^{14} \ cm^{-3}$ | ~20 <i>keV</i> | $\sim 10^{12} \text{ cm}^{-3}$ | ~580 <i>keV</i>                                                            | ~15%                                      |  |



- - device

• Alpha confinement and transport is important Transport can modify heat deposition and bulk plasma profiles

• Alpha loss can degrade performance and damage

Alpha physics includes alpha-AE interaction











## AEs are excited by alphas, can cause energetic particle loss

- AEs are shear Alfvén waves that exist as discrete modes
  - MHD structure determined by bulk
- Energetic particles, including alphas, destabilize AEs
  - Can be treated drift kinetically for wider modes
- AEs can transport alphas, degrading performance and damaging device

**PSFC** 

 ITER scenarios are unstable to AEs (see e.g. Rodrigues et al. NF 2015)



# Accelerated path to fusion poses urgent alpha physics questions

- Forthcoming high field DT experiments pose urgent theory and modeling questions:
  - Could high field devices have TAE activity? • Can it be reduced at same performance?
  - What amplitude TAE changes alpha population? Development of transport theory required Can the effect of this transport be reduced?











# TAEs in high field tokamaks







## Thermal species and energetic particles determine growth rate

- Consider a TAE of frequency  $\omega = \frac{v_A}{2qR}$  driven by alphas born at speed  $v_0$
- TAE linear growth rate is determined by sum of drive and damping
- Alpha drive is given by:

$$\gamma_{\alpha} \sim \omega q^2 \beta_{\alpha} F\left(\frac{v_A}{v_0}, \frac{1}{p_{\alpha}}\frac{dp_{\alpha}}{d\psi}\right)$$

- Ion damping from species *j* is given by:

 $\gamma_i \sim -$ 

Function of energy gradient of ions at resonant velocities



Function of spatial gradient of alphas at resonant velocities

$$\omega q^2 \beta_j G\left(\frac{v_A}{v_{thj}}\right)$$







# Temperature controls AE stability

Alpha particle density scales like:

 $n_{\alpha} \sim \alpha$  source rate × slowing down time ~  $n_D n_T \langle \sigma v \rangle \left( T_e^{3/2} / n_e \right) \sim n_e T_e^{3.5}$ • Neglecting resonance positions, ratio of AE drive to damping scales like:



- AE drive/damping does not have explicit dependence on  $B_0$
- High field scenarios are under development
  - al. FED 2015] have comparable temperatures to ITER

High field devices could have significant AE activity **PSFC** Tolman | European Fusion Theory Conference | October 2019 | 11

$$\frac{\alpha}{J_{j}} \sim \frac{\frac{n_{\alpha}T_{\alpha}}{B_{0}^{2}}}{\frac{n_{e}T_{e}}{B_{0}^{2}}} \sim T_{e}^{2.5}$$

• Early concepts for SPARC [Greenwald et al. APS DPP CPP 2019] and ARC [Sorbom et







# Higher field devices can access higher absolute density

- At a given  $B_0$ , a tokamak can operate with a wide range of plasma parameters • Overall trends in accessible parameters can be understood by holding tokamak
- figures of merit constant



• Resulting trend in *accessible* core plasma parameters is:



Current high field concepts operate far from maximum density



| nd with <b>B</b> _0 |                |   |                       |  |  |
|---------------------|----------------|---|-----------------------|--|--|
| $B_0$               | n <sub>e</sub> | ~ | <i>B</i> <sub>0</sub> |  |  |

# AEs can be reduced by operating at higher n, lower T

Economically, reactor should achieve fixed power density,

 $p_f \left| \frac{MW}{m^3} \right| = E_f n_D n_T \langle \sigma v \rangle \sim n_e^2 T_e^2 \equiv C$ 

• At a given power density,

Drive Damping

- For fixed power density, this corresponds to lower temperatures

High field devices can reduce AE instability by operating at higher density



$$\sim T_e^{2.5} \sim \frac{C^{1.25}}{n_e^{2.5}}$$

• High field devices can access very high densities (higher than in low field machines)

• This slows down alphas faster, reducing AE drive while maintaining fusion power density





# Determinants of TAE transport





# Unperturbed alphas described by slowing down distribution

10

down <sup>g</sup>

 $f_0[10^{-1}]$ 

- Unperturbed alpha population by balancing fusion given source against drag:  $C_{drag}\{f_0\} + \frac{S_{fus}\,\delta(v-v_0)}{4\,\pi v^2} = 0$ 6S<sup>3</sup>]
- slowing the • Gives distribution:

**PSFC** 

$$f_0 = \frac{S_{fus}\tau_s H(v - v_0)}{4 \pi (v^3 + v_c^3)}$$

$$C_{drag}{f} = \frac{1}{\tau_s v^2} \frac{\partial}{\partial v} [(v^3 + v_c^3)f]$$
$$v_c^3 = \frac{3\sqrt{\pi}T_e^{\frac{3}{2}}}{\sqrt{2m_e}n_e} \sum_i \frac{Z_i^2 n_i}{M_i},$$
$$\tau_s = \frac{3MT_e^{3/2}}{4(2\pi m_e)^{1/2} Z^2 e^4 n_e \ln \Lambda}$$









# Drift kinetic formulation aims to put limit on TAE amplitude

- TAEs could transport alphas with a diffusion coefficient  $D_{TAE}$
- TAE transport significantly changes plasma when

• We develop a drift kinetic theory for  $D_{TAE}$  to determine mode amplitude where

$$\frac{D_{TAE}\tau_s}{a_\alpha^2} \sim 1$$

• Focus on collisional processes (not stochasticity arising from resonance overlap)



- $\frac{D_{TAE}\tau_s}{a_\alpha^2} \sim 1$
- Alphas removed by TAE before they can heat the local background plasma









# TAEs perturb tokamak magnetic field

- Background magnetic field is of standard form:  $\vec{B} = \nabla \alpha \times \nabla \psi$ ,  $\alpha = \zeta q\vartheta$
- AEs include magnetic field and electric field *Perturbed vector potential*:

 $\overrightarrow{A_1} = A_{\parallel} e^{i(n\,\alpha - \omega t + (nq - m)\vartheta)} e^{i\int d\psi k_{\psi}(\psi)} \hat{b}$ Amplitude Wave phase **Radial variation** Perturbed electric potential:  $\Phi_1 = \Phi e^{i(n\,\alpha - \omega t + (nq - m)\vartheta)} e^{i\int d\psi k_{\psi}(\psi)}$ 

• Modes create a corresponding perturbation to  $f_{0}$ 

 $f_1 = \frac{Ze \ \Phi_1}{M} \frac{\partial f_0}{\partial \varsigma} + he^{i(n \ \alpha - \omega t + (nq - m)\vartheta)} e^{i\int d\psi k_{\psi}(\psi)}$ 

Adiabatic response,  $\mathcal{E}$  is energy





• To first order, the drift kinetic equation reads

$$\partial_t f_1 + \left( v_{\parallel} \hat{b} + \overrightarrow{v_d} \right) \cdot \nabla f_1 + \left[ \left( v_{\parallel} \hat{b}_1 + \overrightarrow{v_{d1}} \right) \cdot \nabla \psi \right] \frac{\partial f_0}{\partial \psi} + \left[ \frac{Ze}{M} \left( v_{\parallel} \hat{b} + \overrightarrow{v_d} \right) \cdot \overrightarrow{E_1} \right] \frac{\partial f_0}{\partial \mathcal{E}} = C\{f_1 \in \mathcal{F}\}$$

• For AE modes, this reads:

$$v_{\parallel}\hat{b} \cdot \nabla\vartheta \,\frac{\partial h}{\partial\vartheta} - i\left(\omega - n\overline{v_d} \cdot \nabla\alpha \, - k_{\psi}\overline{v_d} \cdot \nabla\psi\right)h \, - C\{f_1\} = -cn\left(1 - \frac{\omega}{\omega_{\star}}\right)\left(\Phi - \frac{v_{\parallel}}{c}A_{\parallel}\right)\frac{\partial f_0}{\partial\psi}e^{i(n)}$$
  
• Here, we define  $\omega_{\star} \equiv \frac{cMn\frac{\partial f_0}{\partial\psi}}{Ze\frac{\partial f_0}{\partial\varepsilon}}$ 







$$v_{\parallel}\hat{b} \cdot \nabla\vartheta \frac{\partial h}{\partial\vartheta} - i\left(\omega - n\overline{v_{d}} \cdot \nabla\alpha - k_{\psi}\overline{v_{d}} \cdot \nabla\psi\right)h - C\{f_{1}\} = -cn\left(1 - \frac{\omega}{\omega_{\star}}\right)\left(\Phi - \frac{v_{\parallel}}{c}A_{\parallel}\right)\frac{\partial f_{0}}{\partial\psi}e^{i(nq)}$$
Streaming along
magnetic field









$$v_{\parallel}\hat{b} \cdot \nabla\vartheta \frac{\partial h}{\partial\vartheta} - i\left(\omega - n\overline{v_d} \cdot \nabla\alpha - k_{\psi}\overline{v_d} \cdot \nabla\psi\right)h - C\{f_1\} = -cn\left(1 - \frac{\omega}{\omega_{\star}}\right)\left(\Phi - \frac{v_{\parallel}}{c}A_{\parallel}\right)\frac{\partial f_0}{\partial\psi}e^{i(nq)}$$
  
Wave frequency







$$v_{\parallel}\hat{b} \cdot \nabla\vartheta \ \frac{\partial h}{\partial\vartheta} - i\left(\omega - n\overline{v_d} \cdot \nabla\alpha - k_{\psi}\overline{v_d} \cdot \nabla\psi\right)h \ - C\{f_1\} = -cn\left(1 - \frac{\omega}{\omega_{\star}}\right)\left(\Phi - \frac{v_{\parallel}}{c}A_{\parallel}\right)\frac{\partial f_0}{\partial\psi}e^{i(nq)}$$
Tangential precession















$$e - C\{f_1\} = -cn\left(1 - \frac{\omega}{\omega_\star}\right)\left(\Phi - \frac{\nu_{\parallel}}{c}A_{\parallel}\right)\frac{\partial f_0}{\partial \psi}e^{i(nq)}$$

## **Particle orbit width**

## Mode amplitude as function of $\psi$









$$v_{\parallel}\hat{b} \cdot \nabla\vartheta \frac{\partial h}{\partial\vartheta} - i\left(\omega - n\overline{v_d} \cdot \nabla\alpha - k_{\psi}\overline{v_d} \cdot \nabla\psi\right)h - C\{f_1\} = -cn\left(1 - \frac{\omega}{\omega_{\star}}\right)\left(\Phi - \frac{v_{\parallel}}{c}A_{\parallel}\right)\frac{\partial f_0}{\partial\psi}e^{i(nq)}$$
  
Pitch angle scattering











$$v_{\parallel}\hat{b} \cdot \nabla\vartheta \,\frac{\partial h}{\partial\vartheta} - i\left(\omega - n\overline{v_d} \cdot \nabla\alpha - k_{\psi}\overline{v_d} \cdot \nabla\psi\right)h - C\{f_1\} = -cn\left(1 - \frac{\omega}{\omega_{\star}}\right)\left(\Phi - \frac{v_{\parallel}}{c}A_{\parallel}\right)\frac{\partial f_0}{\partial\psi}e^{i(nq)}$$



**PSFC** 

Drive due to perturbation and background spatial gradient of alphas

Note: 
$$\omega_{\star} \equiv \frac{cMn\frac{\partial f_0}{\partial \psi}}{Ze\frac{\partial f_0}{\partial \varepsilon}} > \omega$$
 for instability

From now on,  

$$cn\left(1-\frac{\omega}{\omega_{\star}}\right)\left(\Phi-\frac{v_{\parallel}}{c}A_{\parallel}\right)\frac{\partial f_{0}}{\partial\psi} \equiv S(\vartheta)$$









$$v_{\parallel}\hat{b}\cdot\nabla\vartheta \;\frac{\partial h}{\partial\vartheta} - i\left(\omega - n\overline{v_d}\cdot\nabla\alpha \right.$$





 $-k_{\psi}\overrightarrow{v_{d}}\cdot\nabla\psi\big)h - C\{f_{1}\} = -S(\vartheta)e^{i(nq-m)\vartheta}$ 

Drive due to perturbation and background spatial gradient of alphas

Note: 
$$\omega_{\star} \equiv \frac{cMn\frac{\partial f_0}{\partial \psi}}{Ze\frac{\partial f_0}{\partial \varepsilon}} > \omega$$
 for instability

From now on,  

$$cn\left(1-\frac{\omega}{\omega_{\star}}\right)\left(\Phi-\frac{v_{\parallel}}{c}A_{\parallel}\right)\frac{\partial f_{0}}{\partial\psi} \equiv S(\vartheta)$$









 $v_{\parallel}\hat{b} \cdot \nabla\vartheta \,\frac{\partial h}{\partial \vartheta} - i\left(\omega - n\overline{v_d} \cdot \nabla\alpha \, - k_{\psi}\overline{v_d} \cdot \nabla\psi\right)h - C\{f_1\} = -S(\vartheta)e^{i(nq-m)\vartheta}$ Particle in phase with wave Particle moved radially by wave Particle decorrelates via pitch angle scatter:  $C_{pas}\{h\} \sim v_{pas} \frac{\partial^2 h}{\partial \lambda^2}$ **PSFC** 











$$k_{\psi} \overrightarrow{v_d} \cdot \nabla \psi h - C\{f_1\} = -S(\vartheta) e^{i(nq-m)\vartheta}$$

• Fraction of particles in phase:  $\omega - \vec{k} \cdot \vec{v_d} \sim \omega \delta \lambda \sim \frac{v_{pas}}{\delta \lambda^2} \rightarrow \delta \lambda \sim \left(\frac{v_{pas}}{\omega}\right)^{1/3}$ 

Higher v<sub>pas</sub> allows more particles to interact with wave









• Fraction of particles in phase:  $\omega - \vec{k} \cdot \vec{v_d} \sim \omega \delta \lambda \sim \frac{v_{pas}}{\delta \lambda^2} \rightarrow \delta \lambda \sim \left(\frac{v_{pas}}{\omega}\right)^{1/3}$ Higher v<sub>pas</sub> allows more particles to interact with wave • Decorrelation time:  $\delta t \sim \frac{\delta \lambda^2}{\nu_{pas}} \sim \frac{1}{\omega^{2/3} \nu_{pas}^{1/3}}$ Higher v<sub>pas</sub> creates faster decorrelation • Radial step:  $v_{\psi} \delta t \sim \frac{v_{\psi}}{\omega^{2/3} v_{\psi}^{1/3}}$ Faster decorrelation time shortens step size











$$k_{\psi} \overrightarrow{v_{d}} \cdot \nabla \psi h - C\{f_{1}\} = -S(\vartheta)e^{i(nq-m)\vartheta}$$
f particles in phase:  $\omega - \overrightarrow{k} \cdot \overrightarrow{v_{d}} \sim \omega \delta \lambda \sim \frac{v_{pas}}{\delta \lambda^{2}} \rightarrow \delta \lambda \sim \left(\frac{v_{pas}}{\omega}\right)$ 
f v<sub>pas</sub> allows more particles to interact with wave  
fion time:  $\delta t \sim \frac{\delta \lambda^{2}}{v_{pas}} \sim \frac{1}{\omega^{2/3} v_{pas}^{1/3}}$   
Higher v<sub>pas</sub> creates faster decorrelation  
 $\Delta v_{\psi} \delta t \sim \frac{v_{\psi}}{\omega^{2/3} v_{pas}^{1/3}}$   
Faster decorrelation time shortens step size  
 $x \Gamma \sim -\delta \lambda \frac{(v_{\psi} \delta t)^{2}}{\delta t} \frac{\partial n_{\alpha}}{\partial \psi}$ :  $\Gamma \sim -\frac{v_{\psi}^{2}}{\omega} \frac{\partial n_{\alpha}}{\partial \psi}$ 

*v<sub>pas</sub> dependence of decorrelation time and fraction of particles* cancel out: use Krook operator











$$k_{\psi} \overrightarrow{v_{d}} \cdot \nabla \psi h + vh = -S(\vartheta) e^{i(nq-m)\vartheta}$$
f particles in phase:  $\omega - \overrightarrow{k} \cdot \overrightarrow{v_{d}} \sim \omega \delta \lambda \sim \frac{v_{pas}}{\delta \lambda^{2}} \rightarrow \delta \lambda \sim \left(\frac{v_{p}}{\omega} r v_{pas} allows more particles to interact with wave
tion time:  $\delta t \sim \frac{\delta \lambda^{2}}{v_{pas}} \sim \frac{1}{\omega^{2/3} v_{pas}^{1/3}}$   
Higher  $v_{pas}$  creates faster decorrelation  
 $\Delta v_{\psi} \delta t \sim \frac{v_{\psi}}{\omega^{2/3} v_{pas}^{1/3}}$   
Faster decorrelation time shortens step size  
 $x \Gamma \sim -\delta \lambda \frac{(v_{\psi} \delta t)^{2}}{\delta t} \frac{\partial n_{\alpha}}{\partial \psi}$ :  $\Gamma \sim -\frac{v_{\psi}^{2}}{\omega} \frac{\partial n_{\alpha}}{\partial \psi}$$ 

v<sub>pas</sub> dependence of decorrelation time and fraction of particles cancel out: use Krook operator









# Integration over particle trajectory gives h

giving:

$$h = -\left(\oint S[\vartheta(\tau)]P(\tau)d\tau\right) \left(\frac{\nu\tau_b}{\left(\omega - n\overline{\nu_d} \cdot \nabla\alpha\right)^2 \tau_b^2 + \nu^2 \tau_b^2}\right)$$
Phase factor Average tangential precession

paper in preparation for other cases



• Trapped periodicity means only integrate over full bounce (bounce time= $\tau_h$ )

• Note: we consider only most important harmonic of trapped particles; see







# h reveals mode-particle resonance condition





Recall: 
$$h \sim \frac{\nu \tau_b}{(\omega - n \overline{\overrightarrow{v_d}} \cdot \nabla \alpha)^2 \tau_b^2 + \nu^2 \tau_b^2}$$

- For most particles,  $v^2 \ll (\omega n \overrightarrow{v_d} \cdot \nabla \alpha)^2$
- In the limit of small  $\nu$ ,  $h = -\pi \oint S[\vartheta(\tau)] P(\tau) d\tau \delta[(\omega - n\overline{v_d} \cdot \nabla \alpha)\tau_b]$
- resonant particles participate • Only transport



![](_page_31_Picture_9.jpeg)

![](_page_31_Picture_10.jpeg)

![](_page_31_Picture_11.jpeg)

- h contains resonance  $\delta(\omega n\overline{\nu_d} \cdot \nabla \alpha)\tau_b$
- Mode structure is  $\overrightarrow{A_1} \sim e^{i(n \alpha \omega t + (nq m)\vartheta)}$
- Resonance occurs when particle's precession in  $\alpha$  matches mode speed

![](_page_32_Picture_4.jpeg)

# Resonance exists between precession and mode frequency

![](_page_32_Picture_8.jpeg)

![](_page_32_Picture_21.jpeg)

![](_page_32_Picture_22.jpeg)

![](_page_32_Picture_23.jpeg)

![](_page_32_Picture_24.jpeg)

# Integration yields diffusion coefficient

• Heat flux is given by flux surface average energy, h, and velocity outwards:

$$\Gamma = \left( \int d^3 v \left( \frac{M v^2}{2} \right) \right)$$

• Integration gives (drop order unity numerical coefficients):

$$\Gamma \sim \sqrt{\epsilon} M c^2 \Phi^2 R^2 \Omega_p n \left( \ln \frac{n v_0^2}{\Omega_p \omega R^2} \right) \frac{\partial n_\alpha}{\partial \psi}$$

- Compare to phenomenological estimation
- Logarithm comes because  $\overrightarrow{v_d} \cdot \nabla \alpha$  vanishes for some trapped particles

![](_page_33_Picture_7.jpeg)

 $\left|h\left(v_{\parallel}\hat{b}+\vec{v}_{d}\right)_{1}\cdot\nabla\psi\right|$ 

te: 
$$\Gamma \sim -\frac{v_{\psi}^2}{\omega} \frac{\partial n_{\alpha}}{\partial \psi}$$

![](_page_33_Picture_15.jpeg)

![](_page_33_Picture_16.jpeg)

# $D_{TAF}$ gives condition for onset of depletion

The diffusion coefficient resulting from flux is given by

$$D_{\text{TAE}} \sim n\sqrt{\epsilon} \left(\frac{Ze\Phi}{Mv_0^2}\right)^2 \rho_{p0}^2 \Omega_p \left(\ln\frac{nv_0^2}{\Omega_p\omega R^2}\right)$$

- Increases with  $\rho_{p0}^2$ , n
- Recall goal of work: determine when
- Significant change in alpha distribut

$$\frac{Ze\Phi}{Mv_0^2} \sim \left(\frac{a_{\alpha}}{\rho_{p0}}\right) \sqrt{\frac{1}{\tau_s \Omega_p n \sqrt{\epsilon} \ln\left(\frac{nv_0^2}{\Omega_p \omega R^2}\right)}} \equiv A_{max}$$

![](_page_34_Picture_7.jpeg)

re 
$$\frac{D_{TAE} \tau_s}{a_{\alpha}^2} \sim 1$$
  
tion and heating happens when

![](_page_34_Picture_11.jpeg)

![](_page_34_Picture_12.jpeg)

![](_page_34_Picture_13.jpeg)

# Only small amplitude necessary for significant redistribution

- Plot shows  $\frac{D_{TAE}\tau_s}{a_{\alpha}^2} \sim 1$  at SPARClike parameters
- Many studies of TAE saturation exist; some<sup>1</sup> show amplitudes around  $10^{-4}$
- TAEs could cause significant collisional redistribution
- Decreasing slowing down time (by increasing *n* and decreasing) T) reduces effect of transport

<sup>1</sup> See, e.g., Fitzgerald et al. NF 2016

![](_page_35_Picture_6.jpeg)

![](_page_35_Picture_7.jpeg)

![](_page_35_Figure_8.jpeg)

![](_page_35_Picture_10.jpeg)

![](_page_35_Picture_12.jpeg)

![](_page_35_Picture_13.jpeg)

![](_page_35_Picture_14.jpeg)

# Conclusions

- Alpha particle physics, especially at high field, is exciting now
- Higher temperature promotes TAE instability
  - To reduce TAE instability, decrease slowing down time Fusion 59, 046020 (2019).
- redistribution
  - Significant transport possible
  - Transport from trapped (this presentation) and passing (paper in preparation)
  - To reduce effect of transport, decrease slowing down time See E.A. Tolman, P.J. Catto, N.F. Loureiro, In preparation (2019).

![](_page_36_Picture_8.jpeg)

See E.A. Tolman, N.F. Loureiro, P. Rodrigues, J.W. Hughes, E.S. Marmar, Dependence of alpha-particle-driven Alfvén eigenmode linear stability on device magnetic field strength and consequences for next-generation tokamaks, Nuclear

• Drift kinetic description of alpha transport can determine when TAEs cause significant