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Overview

I Understanding heat transport in tokamak plasmas is crucial
for the design of future experiments and reactors

I Numerical evidence points towards turbulence as the main
cause for heat transport in tokamak plasmas

I Therefore, we seek to describe the saturated turbulent state
and the mechanisms of its saturation

I We focus on turbulence driven by the
ion-temperature-gradient (ITG) instability
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Outline

I ITG saturation, zonal flows (ZFs) and the Dimits shift

I 2D 2-fluid magnetic-curvature-driven ITG model

– Naturally capture the ITG microinstability

– This model has a well-defined Dimits transition

I We investigate the character of near-marginal turbulence
and the saturation mechanisms

– The near-marginal state is dominated by quasi-static strong
zonal flows

– Intertwined patch-wise constant zonal shear and strong
zonal temperature perturbations, somewhat reminiscent of
the E ×B staircase (Dif-Pradalier et al., 2010)

I By considering the zonal flow drive in this state, we find an
analytical estimate for the Dimits threshold
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The Dimits shift

Figure 1: The Dimits shift paradigm (Dimits et al., 2000).
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How do we approach this?

I We use a 2D 2-field model for the perturbations of
electrostatic potential and ion temperature

I Derived in a physically realisable, if not necessary most
general, regime as an asymptotic limit of the electrostatic
ion gyrokinetic (GK) equation

I Contains a curvature-driven ion-temperature-gradient
(ITG) microinstability, characteristic of tokamak plasmas

I A two-field model allows us to capture the important ITG
linear instability, while keeping the equations simple
enough for analytic progress to be possible

I We find that this model has a well-defined Dimits transition
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Geometry

Figure 2: Illustration of the Z-pinch magnetic geometry. Here x and y
correspond to the "radial" and "poloidal" coordinates in a tokamak.
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Electron response

I Electron physics — modified adiabatic response:

δne
ne

=
e(φ− φ)

Te
=
eφ′

Te
, (2)

where φ is the flux-surface (zonal) average of the
electrostatic potential φ and φ′ ≡ φ− φ is the nonzonal
part of the field

I This electron response has been found to be crucial for
capturing essential zonal-flow properties (Hammett et al.,
1993)
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Orderings

I Highly-collisional, long-wavelength, 2D (k‖ = 0) limit

νi � ∂t ∼ k2⊥ρ2i νi, k2⊥ρ
2
i � 1. (3)

I Cold ions Ti/Te → 0, but finite sound radius

ρs ≡
ρi√
2τ
, τ ≡ Ti

ZTe
. (4)

Applying these approximations to the ion gyrokinetic (GK)
equation, we obtain a system of closed equations for the electric
potential φ and ion temperature perturbations δTi.
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Normalised equations

∂t
(
ϕ′ −∇2ϕ

)
+
{
ϕ,ϕ′ −∇2ϕ

}
+∇ · {∇ϕ, T}

−∂y (ϕ+ T ) + κT∂y∇2ϕ = −χ∇4(aϕ− bT ), (5)

∂tT + {ϕ, T}+ κT∂yϕ = χ∇2T . (6)

The only parameters are κT , χ and the size of the domain
Lx, Ly.

κT ≡
τLB

2LT
, χ ≡ τLB

ρs

8

9

√
2

π

νi
Ωi

(7)
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Normalised equations
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Normalised equations

∂t
(
ϕ′ −∇2ϕ

)
+
{
ϕ,ϕ′ −∇2ϕ

}
+∇ · {∇ϕ, T}

−∂y (ϕ+ T ) + κT∂y∇2ϕ = −χ∇4(aϕ− bT ), (5)

∂tT + {ϕ, T}+ κT∂yϕ = χ∇2T . (6)

Magnetic drift: −∂y (ϕ+ T )

9 / 29



Normalised equations
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Normalised equations
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Normalised equations
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Thermal diffusion: χ∇2T
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ITG instability

Figure 3: Linear growth rates of pure DW (kx = 0) Fourier modes.
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Saturated state

Figure 4: Log of the box-averaged heat flux lnQ. The shaded region is
beyond the Dimits threshold (κT > κcT ), where strong turbulence
resides. The "X" marks the parameters κT = 0.36, χ = 0.1, which we
shall use to illustrate the near-marginal state. 11 / 29



Saturated state
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Figure 5: Left: Box-averaged heat flux Q in the saturated state versus
κT for χ = 0.1. Right: Box-averaged heat flux Q in the saturated
state versus χ for κT = 0.36.
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Near-marginal state
The near-marginal state is quasi-steady, occasionally interrupted
by bursts of turbulence:

Figure 6: Top: time trace of the heat flux Q. Bottom: time trace of
the ZF velocity, U = ∂xϕ. Each turbulent burst is accompanied by an
order-of-magnitude increase in Q.
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Near-marginal state (between bursts)
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Figure 7: Radial profiles of ZF, zonal shear, zonal temperature
gradient, turbulent (black) and diffusive (orange) radial heat fluxes.
The dashed green line corresponds to the largest linear ITG growth
rate ±γmax. The dashed black line shows the value of the equilibrium
temperature gradient κT . Here κT = 0.36, χ = 0.1.
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Turbulent bursts

Figure 8: Temperature perturbations before, during, and after a
turbulent burst for χ = 0.1, κT = 0.36. The shaded areas on the
top-left panel mark the ZF minimum around x = 25 and maximum
around x = 47.
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Momentum flux

I Let us investigate the way in which zonal profiles are
reconstituted after the turbulent bursts. The equation for ϕ
is

∂tϕ = ∂xϕ∂y (ϕ+ T ) + χ∂2x(aϕ− bT ). (7)

I Define the Reynolds stress Πϕ ≡ ∂xϕ∂yϕ and the
"diamagnetic" stress ΠT ≡ ∂xϕ∂yT

I These two comprise the turbulent momentum flux that
drives the ZFs

I Numerically we find that Πϕ and ΠT have opposite signs
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Momentum flux
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Figure 9: Time-averaged momentum fluxes for saturated ITG
turbulence over a fixed zonal background. The sign of Πt = Πϕ +ΠT

coincides with that of Πϕ and opposes the sign of S. This reflects
that κT = 0.36 < κcT ≈ 1.
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Momentum flux
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Figure 10: An illustration of the enhancing and diminishing effects of
Πϕ and ΠT on the ZF. The black curve is the zonal electrostatic
potential ϕ.

∂tϕ = Πϕ +ΠT + viscosity
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Momentum flux for constant ZF shear

I We can understand the effect of the zonal shear by
changing coordinates to the "shearing frame":

t′ = t, x′ = x, y′ = y − Stx. (8)

I A Fourier mode in the shearing frame corresponds to a
lab-frame mode with a time-dependent radial wavenumber:

kx = k′x − Stk′y, ky = k′y. (9)

I Thus, S > 0 anticorrelates the signs of kx and ky, and
vice-versa for S < 0
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Momentum flux for constant ZF shear

I We can integrate the Reynolds stress:∫
dx

Lx
Πϕ =

∫
dx

Lx
∂xϕ∂yϕ =

∑
k

kxky|ϕk|2 (10)

I For S > 0 we get kxky < 0 on average (due to
kx = k′x − Stk′y), and vice-versa for S < 0

I Thus S and Πϕ have opposite signs
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Momentum flux for constant ZF shear

I We can write a similar expression for the diamagnetic
stress:

1

Lx

∫
dx ΠT =

∑
k

kxky|ϕk|2Re
Tk
ϕk
. (11)

I Then the total turbulent momentum flux is

1

Lx

∫
dx (Πϕ +ΠT ) =

∑
k

kxky|ϕk|2
(
1 + Re

Tk
ϕk

)
. (12)

I Hence a (kx, ky) mode feeds the ZFs if and only if
Re(Tk/ϕk) > −1
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Momentum flux for constant ZF shear

I The term Re(Tk/ϕk) is hard to predict analytically

I We can get a good heuristic understanding using the linear
modes

I It turns out that Re(Tk/ϕk) < 0 for all linear modes
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Varying κT

What happens to the ITG turbulence over an imposed static ZF
when we vary the temperature gradient κT ?
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Varying κT
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Figure 11: Time-averaged momentum fluxes for saturated ITG
turbulence over a fixed zonal background, κT = 0.49, χ = 0.1.
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Varying κT
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Figure 11: Time-averaged momentum fluxes for saturated ITG
turbulence over a fixed zonal background, κT = 0.64, χ = 0.1.
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Varying κT
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Figure 11: Time-averaged momentum fluxes for saturated ITG
turbulence over a fixed zonal background, κT = 0.81, χ = 0.1.
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Varying κT
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Figure 11: Time-averaged momentum fluxes for saturated ITG
turbulence over a fixed zonal background, κT = 1, χ = 0.1.

24 / 29



Varying κT
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Figure 11: Time-averaged momentum fluxes for saturated ITG
turbulence over a fixed zonal background, κT = 1.21, χ = 0.1.
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Varying κT

I We can vary the temperature gradient κT at fixed χ and a
fixed static ZF profile

I It turns out that as κT increases, so does ΠT relative to Πϕ

I Denote by κstatic
T the gradient at which the Reynolds and

diamagnetic stresses balance in order to give a
time-averaged Πt = Πϕ +ΠT ≈ 0

I The value of κstatic
T is found to be insensitive to the exact

ZF profile used and coincides with the observed Dimits
threshold κcT
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Linear mode approximation for the Dimits threshold

I We can use the linear mode structure to approximate
κstatic
T , and, by extension, κcT

I We look for κT such that Re(Tk/ϕk) = −1 for the
"appropriate" modes

I The most unstable modes in general are streamers (kx = 0),
but these cannot survive the strong ZFs

I We use the most unstable mode with kx = ky
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Linear mode approximation for the Dimits threshold
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Figure 12: Comparison of numerical data (blue points) and analytic
approximation (black curve) for the Dimits threshold.
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Conclusions

I We have described the Dimits regime for curvature-driven
ITG turbulence in 2D

I The ZFs and zonal temperature work together to suppress
the instability in two different ways — strong zonal shear
and temperature-gradient flattening

I Occasional tubulent bursts occur due to the viscous decay
of the ZFs

I The Dimits threshold is linked to the turbulent momentum
flux of ITG turbulence over an imposed ZF shear

I We proposed and verified a quantitative formula for the
value of the Dimits threshold
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Normalisations

t̂ ≡ 2ρsΩi

LB
t, x̂ ≡ x

ρs
, ŷ ≡ y

ρs
,

ϕ̂ ≡ τLBϕ

2ρs
=
τLB

2ρs

Zieφ

Ti
, T̂ ≡ τLBT

2ρs
=
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2ρs

δT

Ti
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Near-marginal state (between bursts)
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Figure 13: Left: Time- and space-averaged over the shear zones ZF
shear S versus maximum ITG growth rate γmax. The fitted line is
S ≈ 2γmax. Right: Time-averaged of normalised total temperature
relative to the absolute temperature TR of the right edge of the
domain.
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Near-marginal state

Figure 14: .
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Beyond the threshold

I Beyond the staircase state, our equations fail to reach
saturation

I The transition from ZF-dominated saturation to blow-up in
this system is equivalent to the transition from the
zonally-dominated Dimits regime to fully developed
turbulence

I Saturation in GK simulations beyond Dimits is "critically
balanced" (Barnes et al., 2011), hence fundamentally 3D
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Blow up

Figure 15: Heat flux evolution beyond the Dimits regime.
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Blow up

Figure 16: Snapshots of temperature perturbations in the blow up
state beyond the Dimits threshold. The colours actually represent
arcsinh(10T ) in order to visualise properly the vast difference in
amplitudes.
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Turbulent bursts

Figure 17: A close view of a turbulent burst. Top: time trace of the
box-integrated radial heat flux Q. Bottom: time trace of the local
radial heat flux.

7 / 11



Localised Structures

Figure 18: Snapshot of T with structures visible.

I Soliton-like "ferdinons" (van Wyk et al., 2016) are seen
drifting through the sheared regions

I These structures increase the heat flux dramatically

I They trigger the turbulent bursts 8 / 11



Localised Structures

I These structures can drift both inwards and outwards,
regardless of the local zonal shear

I The direction of their radial drift is given by their net
temperature

I They are always emitted from ZF maxima

I GK avalanches with similar properties have been reported
by Villard et al. (2013)
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Localised Structures
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Influence of ZFs on turbulent perturbations

Let us highlight the terms, where the ZF enters the equations:

(∂t+U∂y)
(
1−∇2

)
ϕ′ − (1−∂3

xϕ)∂y
(
ϕ′ + T ′

)
+ κT∂y∇2ϕ′

+S∂x∂yT
′ +
{
ϕ′,−∇2ϕ′

}
+∇ ·

{
∇ϕ′, T

}
= −χ∇4(aϕ′ − bT ′), (15)

(∂t+U∂y)T + κT∂yϕ+
{
ϕ′, T

}
= χ∇2T, (16)

where U = ∂xϕ and S = ∂2xϕ.
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