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Resonance between these frequencies and MHD mode frequencies: 

Ø Particles:
3 caracteristic frequencies

→ 1/ giration
→ 2/ bounce
→ 3/ toroidal precession

Ø ITER: fusion reactions induce fast particles a (3,5MeV)
→ confinement crucial for energy transfer

Ø Current tokamaks: fast particles induced by heating sources
→ good proxy to predict a dynamics

Fast particles modes
modify stability 

redistribute / de-confine
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Motivations (2): key issues to be raised in modeling
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[DIII-D example, 
Heidbrink PRL2007]

Ø Fast particles can destabilize Alfvén Eigenmodes (AE):

→ Alfvén modes stable without fast particles.

→ Fast particles destabilize modes TAE / BAE / RSAE / UKAEA … 

→ transport → degradation of confinement + losses damaging walls.
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Ø Fast particle interaction with sawteeth:
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→ OR fast particles may destabilize fishbones 

→ combined fishbones/sawteeth [Nave NF91] or no sawteeth [Günter NF99]
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Ø Initially developed by H. Lütjens and J.F. Luciani [Lütjens JCP10]

Ø Input for the code: 

→ Equilibrium bulk profiles from CHEASE code [Lütjens CPC96]
→ Maxwellian or slowing-down kinetic distribution function

Ø Boundary conditions: plasma described inside separatrix: OK for core physics
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ØFishbone/sawtooth dynamics using slowing-down 
fast-particle distribution [Brochard PhD thesis 2019]

ØMHD interaction with NBI-induced fast particles 



Outline

EFTC 2019François Orain 4/20

ØFishbone/sawtooth dynamics using slowing-down 
fast-particle distribution [Brochard PhD thesis 2019]

→ Tool for preliminary studies: linear fishbone model 
→ Fishbone dynamics with XTOR-K

ØMHD interaction with NBI-induced fast particles 



Outline

EFTC 2019François Orain 4/20

ØFishbone/sawtooth dynamics using slowing-down 
fast-particle distribution [Brochard PhD thesis 2019]

→ Tool for preliminary studies: linear fishbone model 
→ Fishbone dynamics with XTOR-K

ØMHD interaction with NBI-induced fast particles 
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Ø Considers energy principle in kinetic-MHD form:

Kinetic energy of instability

MHD 
potential
energy

Fast particle
potential energy

[Chen PRL83, 
Coppi PFB90, 
White PFB90, 
Porcelli POP94]
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Ø Considers energy principle in kinetic-MHD form:

Kinetic energy of instability

MHD 

potential

energy

Fast particle

potential energy

MHD 

displacement

Perturbed

fast particle

distrib. function

→ Solves complex kinetic-MHD dispersion relation for fishbone instability 

[Chen PRL83, 
Coppi PFB90, 
White PFB90, 
Porcelli POP94]

[Brochard JPCS 2018]

Goal: quick linear stability analyses for internal kink and fishbone 

→ pave the way for long non-linear simulations with XTOR-K

Ø Model hypotheses:
→ Thin orbit width

→ bfast << btotal



2 branches of instabilities on q=1 depending on fast 
particle fraction: kink or fishbone modes

EFTC 2019François Orain 6/20

Ø Circular ITER-like test case :
→ Isotropic slowing-down distrib.,

peak energy of 1MeV
→ peaked fast particle density:

na(r) = na,0(1 –r2)6
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Ø Circular ITER-like test case :
→ Isotropic slowing-down distrib.,

peak energy of 1MeV
→ peaked fast particle density:

Ø Qualitative agreement on linear stability between linear model and XTOR-K

na(r) = na,0(1 –r2)6
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Resonant regions in phase-space
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Ø Zones of precessionnal resonance similar in linear model and XTOR-K

Resonant zone 
in linear model

Ø Passing VS trapped particles characterized by pitch-angle l µ µ
→ here trapped: l > 0.87



EFTC 2019François Orain

ØFishbone/sawtooth dynamics using slowing-down 
fast-particle distribution [Brochard PhD thesis 2019]

→ Tool for preliminary studies: linear fishbone model 
→ Fishbone dynamics with XTOR-K

ØMHD interaction with NBI-induced fast particles 



ITER 15MA scenario: fishbone may be unstable 
below expected fast particle fraction
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Ø Realistic ITER 15MA scenario
→ !"#= 10&# '()
→ *"#= *+#= 23 keV

→ slowing-down distrib of a
(birth @ 3,5MeV)

→ Goal !: check fishbone stability 
in ITER + study dynamics

Profiles as in integrated
modeling codes

q profile:
q=1 @ s=0.4
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Ø Realistic ITER 15MA scenario
→ !"#= 10&# '()
→ *"#= *+#= 23 keV

→ slowing-down distrib of a
(birth @ 3,5MeV)

→ Goal !: check fishbone stability 
in ITER + study dynamics

Profiles as in integrated
modeling codes

q profile:
q=1 @ s=0.4

Ø For ,# = 0.95 − 0.9, 
threshold for fishbone instability: 
23456 / 2686 = 6-10%

Ø ITER physics basis 23456 / 2686 > 15%
→ fishbone-unstable!
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Fishbone
begins

Fishbone
saturation

End
fishbone phase Kink phase

! = #. %x'#()* ! = '#()* ! = '. +x'#()* ! = '. ,x'#()*

→ q unaffected 
by fishbone 

Linear
Kink

Phase
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Ø Chirping during fishbone oscillations…
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resonant fast particle profile 
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Ø Chirping during fishbone oscillations… associated with flattening of 
resonant fast particle profile 

non-resonant
zone

resonant
zone

Mode frequency w µ ∇na

Linear
Kink

Phase

6% of fast particles inside q=1 move outward due to fishbone

Resonant particle transport induced by fishbones
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fast-particle distribution [Brochard PhD thesis 2019]

→ Tool for preliminary studies: linear fishbone model 
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ØMHD interaction with NBI-induced fast particles 
→ New features in XTOR-K: collisions and NBI
→ Ongoing work towards fishbone induced by NBI
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Feat #1: Collisions in XTOR-K [Timothée Nicolas]
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Ø XTOR-K contains kinetic markers and fluid populations
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Ø Validated with typical relaxation tests.



Domain decomposition needed for collisions
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Ø Domain decomposition 
also improves performances:
speed-up = 1.7 times  

Proc 0 Proc 1 Proc 2
Proc 0

Proc 1

Proc 2

Domain Cloning:
Binary collisions impossible

Domain Decomposition:
Binary collisions possible



→ Kinetic module: neutral particle source reproduce experimental geometry

→ Injection rate depends on 
beam power and energy

→ Neutral particles follow a line 
towards a target point 
with random deviation

target
point

Feat #2: Realistic fast ion source induced by 
Neutral Beam Injection (NBI)  [F. Orain]
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→ Kinetic module: neutral particle source reproduce experimental geometry

→ Injection rate depends on 
beam power and energy

→ Neutral particles follow a line 
towards a target point 
with random deviation

→ Along this line, cumulative 
ionization probability 
is calculated : 

rectangular
source

target
point

beam lines
with random
deviation

Feat #2: Realistic fast ion source induced by 
Neutral Beam Injection (NBI)  [F. Orain]
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1 − # $ = 1 − # $ − Δ$ exp(−+,-Δ$)
with ionization cross-section → fit takes into account 
atomic physics [Suzuki PPCF98] 
→ When random threshold: particle is ionized.

- = /(+,, 1,, 2nergy)

1 − # $ <



NBI-induced fast ion source validated for AUG case
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→ Experimental geometry and equilibrium profiles from AUG shot #23076
[Acknowledgement to Giovani Tardini, IPP Garching]
→ Experimental NBI source geometry: radial and tangential sources

Integrated number of 
injected particles,
top view

→ Good agreement of ionization 
with NUBEAM calculation 
[Asunta CPC15]
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→ Experimental geometry and equilibrium profiles from AUG shot #23076
[Acknowledgement to Giovani Tardini, IPP Garching]
→ Experimental NBI source geometry: radial and tangential sources

Integrated number of 
injected particles,
top view

→ Good agreement of ionization 
with NUBEAM calculation 
[Asunta CPC15]
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NBI + collisions allow us 
to reproduce experiments 
in modeling of fast 
particle-MHD interaction
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ØFishbone/sawtooth dynamics using slowing-down 

fast-particle distribution [Brochard PhD thesis 2019]
→ Tool for preliminary studies: linear fishbone model 

→ Fishbone dynamics with XTOR-K

ØMHD interaction with NBI-induced fast particles 

→ New features in XTOR-K: collisions and NBI

→ Ongoing work towards fishbone induced by NBI

Ø 2 steps:

1/ NBI ON + collisions ON. Constant MHD fields

2/ NBI OFF, MHD evolution ON, collisions still ON.

Ø Initial condition: equilibrium bulk plasma : 

99% fluid (MHD) + 1% kinetic (maxwellian)



ITER-like 15MA simulation with 1NBI: step#1
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[ITER EDA documentation series No. 24,
ITER technical basis, IEAE 2002]

NBI2

Integrated number of injected
particles, top view

(a.u.)

Ø 1

st

step: NBI ON + collisions ON. Constant MHD fields

→ 1 NBI tangential source, P
NBI

=16.5 MW, E
particle

=1MeV

→ Increased collision rate and P
NBI

x10

3

-10

4

to reduce computation time
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Initial 1% bulk=kinetic

t=103 tA

t=3x103 tA

t=5x103 tA

t=103 tA

t=3x103 tA

t=5x103 tA

Step#1: relaxation towards realistic slowing-down distrib.

Ø 1st step: NBI ON + collisions ON. Constant MHD fields
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Initial 1% bulk=kinetic
Injection @1MeV:
only passing particles

collisions collisions

t=103 tA

t=3x103 tA

t=5x103 tA

t=103 tA

t=3x103 tA

t=5x103 tA

trapped
particles

<2%

≈10%

Step#1: relaxation towards realistic slowing-down distrib.

Ø 1st step: NBI ON + collisions ON. Constant MHD fields
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Ø 2nd step: NBI OFF, MHD evolution ON, collisions still ON. 
→ self-consistent interaction between MHD and NBI-injected fast particles
→ Goal !: check if NBI can induce fishbone in ITER

Step#2: Case #1: reduced ENBI and bulk density:
no effect of NBI on kink/fishbone stabiliity
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Ø Test case #1: E=1MeV→ E=100keV ; ne=1x1020m-3 → ne=3x1019m-3

Ø 2nd step: NBI OFF, MHD evolution ON, collisions still ON. 

→ self-consistent interaction between MHD and NBI-injected fast particles

→ Goal !: check if NBI can induce fishbone in ITER

Step#2: Case #1: reduced ENBI and bulk density:

no effect of NBI on kink/fishbone stabiliity

q=1

→ “classical” internal kink 

mode (n=1, m=1):

same growth rate and 

dynamics as without NBI

→ no resonance between 

fast particles and n=1 mode 

Perturbation of ion pressure 
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Ø Test case #2: E=1MeV ; ne=1x1020m-3

Very few particles in 
fishbone-resonant zone: still internal kink

Step#2: Case #2: realistic ENBI and bulk density:
still no fishbone-resonant configuration

Ø 2nd step: NBI OFF, MHD evolution ON, collisions still ON. 
→ self-consistent interaction between MHD and NBI-injected fast particles
→ Goal !: check if NBI can induce fishbone in ITER
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Ø Test case #2: E=1MeV ; ne=1x1020m-3

Very few particles in 
fishbone-resonant zone: still internal kink

Step#2: Case #2: realistic ENBI and bulk density:
still no fishbone-resonant configuration

Ø 2nd step: NBI OFF, MHD evolution ON, collisions still ON. 
→ self-consistent interaction between MHD and NBI-injected fast particles
→ Goal !: check if NBI can induce fishbone in ITER

Next steps: 
1/ Inject NBI-induced distribution
into linear model 
→ predict fishbone-unstable 
conditions
2/ XTOR-K is ready for non-
linear simulations



Additional work in progress: extend computational 
domain, including SOL, coils and wall

EFTC 2019François Orain 19/20

Ø Enabling Research project “kinetic MHD and control opportunities”:
PI Timothée Nicolas

→ Domain extension validated in 
vacuum [A. Marx PPCF2017]

→ Under development for plasma with
resistive wall

→ First external kink modeling ongoing



Conclusion
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Ø XTOR-K : hybrid MHD + kinetic
→ new features: linear fishbone model for predictions, collisions, NBI

+ ongoing: extend computational domain to SOL and wall
→ allows to model realistic tokamak physics in the core + soon at the edge

Ø Linear model + XTOR-K with slowing-down fast particle distrib:
→ ITER: Fishbone unstable below expected bfast threshold
→ chirping of fishbone with resonant transport

Ø XTOR-K with NBI and collisions:
→ Realistic fast particle distribution relaxes towards slowing-down
→ ITER: on the way to check if NBI can induce fishbone
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Ø At high energies, the linear model thin orbit width approximation breaks 
down

Ø Linear verification cannot be performed for !" > 1 MeV

THIN ORBIT WIDHT ASSUMPTION 
INCORRECT FOR !" > 1MeV
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Ø For low birth energy ( < 1MeV), fishbones triggered with !"~!$%$

Ø EP pdf with &' < 1MeV not suitable for linear verification

LOW EP PRESSURE APPROXIMATION 
NOT VALID AT &' < 1MeV
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Ø Overall EP transport in core plasma around 6% in the fishbone phase

Ø Effects of the alpha fishbone instability on fusion performances limited

Ø Fast mode chirping may prevent to transport large amount of EP

WEAK OVERALL 
TRANPORT IN ITER



Binary collisions
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with small parameter ´ given by

´2u3

3
5 Dt(4fe2

ae2
b ln L) S 1

ma
1

1
mb
D2

c. (2)

Justification of Eq. (1) with Eq. (2) will be shown later.
The operation of the operator e´n̂3 on an arbitrary vector
w is defined by the Taylor series as

e´n̂3w 5 w 1 ´n̂ 3 w 1
1
2!

´2n̂ 3 n̂ 3 w 1 ...,

u 5 va 2 vb is the relative velocity before the collision, ln
L is the Coulomb logarithm, and n̂ is a random unit vec-
tor with a uniform distribution. The factor c in Eq. (2)
takes

c 5Hnb/Nb 5 na/Na , unlike particle collisions

na/(Na 2 1), like particle collisions (a-species).

In the implementation, the operation (e´n̂3 2 1)u in Eq.
(1) is performed via the following approximation,

(e´n̂3 2 1)u 5 (sin ´)n̂ 3 u 1 (1 2 cos ´)n̂ 3 n̂ 3 u. (3) FIG. 1. A sketch of Coulomb binary collision.

´ ! 1 gives restriction to the step size Dt of the collision in-
tegration. energy conservation requires that the magnitude of a rela-

Next, we shall address the construction of the Monte tive velocity does not change during the collision, i.e.,
Carlo operator and demonstrate the properties of the oper-
ator. Consider Coulomb collision of two model particles uu9u 5 uuu. (5)
a and b, as shown in Fig. 1a. In three-dimensional velocity
space, there are six quantities (velocity components of the Then, set the relative velocity after the collision as
two particles) that can change during the collision. How-
ever, energy conservation and momentum conservation u9 5 R̃u 5 [e´n̂3]u, (6)
impose four constraints. Thus, only two parameters can
freely change. These two free parameters correspond to where ´ is an infinitesimal and nondimensional parameter
the impact parameter r (or scattering angle u) and the to be determined later. It is readily shown that u9 given
azimuthal angle f shown in Fig. 1b. The fact that there by Eq. (6) satisfies Eq. (5). From Eqs. (4) and (6) we obtain
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Q and F of the velocity u9 after collision relative to the The remaining task is to determine ´. ´ is determined
velocity u before collision (Fig. 1c). Here, two random from the requirement that the Monte Carlo operator ex-
variables are combined and selected to be a random unit pressed by Eqs. (1) and (3) must be equivalent to the exact
vector n̂ of the uniform distribution, as is seen later. Fokker–Planck operator,
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q Select the two angles so that on average, friction and 
dissipation have their theoretical values

q Calculation is O(N)
q Equivalent to Landau-Fokker-Planck [Bobylev PRE 2000]

Binary collisions are NOT 
Rutherford collisions!!

Equations

T. Nicolas

3 avril 2018
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Improvement of code execution thanks to domain 
decomposition, even including collisions

q The acceleration is only due to 
q Avoided cache miss
q Change of field advance (done inside the loop to avoid one dcopy per particle

step)
q No optimization to adapt to domain decomposition of 

q Particle deposition
q MPI reduce

Domain cloning Domain decomposition

q Move: ~30s 

q Deposition: <1.5s

q Nonlinear solver: ~3s

q Total: ~36s/time step

q Move: ~11.5s 

q Deposition: >1.5s

q Nonlinear solver: ~3s

q Collisions: <0.1s

q Total: ~21s/time step



Inter- and intra-species collisions

q Inter-species binary collisions

q Energy conservation is only
statistically guaranteed, 
because of weight difference
[Nanbu JCP 1998]

q Conservation is exact in the 
case of intra-species collisions

q Langevin collisions on the electrons

q Electrons are assumed at rest
(otherwise incompatibility with
artificially high resistivity)



Neoclassical tests difficult

q A priori the code contains ion neoclassical physics, in particular if the 
main ion is mainly kinetic. However with a full-f description, PIC noise is
very large on velocity.

The last step comes from the fact that xi and xj are independent if i 6= j. Then
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We immediately obtain the result
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We see the usual 1/
p
N factor for the PIC noise. But the most important fact in the above formula

is that the other factor is proportional to the ratio between the thermal velocity

p
hx2i and the mean

velocity hxi. If the mean velocity is much smaller than the thermal velocity, the PIC noise is amplified

by this large factor!

Now let us see if we have a similar problem for the temperature. We will need the quantity hxixjxkxli:
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It is even easier to compute E [T ]:
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To understand what all these 1/N factors mean, imagine (and carry out) the following experiment:

• Sample N points from the gaussian random variable. Take N to be not too large, for instance

N = 10.

2

• Compute T = 1
N
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, and store it in an array.

• Repeat the operation a large number of times (e.g. 1 million times), appending the array each time.

• Take the average of your array of temperatures. On average you will find T =
�
1� 1
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hx2i, and

not T = hx2i, as one could naively expect!

Finally, the result is
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For a Gaussian variable, hx4i = 3hx2i2, so that in the limit of large N , we find
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We see that in this case, the problem we saw on the velocity does not appear!
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Velocity PIC noise is amplified, compared
to temperature, by a large factor:
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q For the moment, not enough numerical ressources to test the full 
neoclassical transport. Research ongoing.


