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Field lines in a quasi-axisymmetric stellarator 
(Henneberg, et al). Field strength is indicated by color. 

 A quasi-axisymmetric stellarator 
satisfies the constraint |B|= f(ψ,θ), 
where ψ and θ are Boozer radial-
like and poloidal-like coordinates

 The device is set up so that a 
particle traveling along a field line 
only “sees” a tokamak-like variation 
of the field magnitude

 Thus, neoclassical transport should 
be comparable to that in a tokamak

 Quasi-axisymmetric stellarators tend to have large bootstrap currents, which 
make a noticeable contribution to the rotational transform

 The presence of a significant plasma current raises the question of whether 
quasiaxisymmetric stellarators are prone to disruptions

 For the present work, we derive reduced MHD models suitable for stellarator 
geometries. This aims at future computational studies addressing the question 
of disruptions.

09/30/2019 6



European Fusion Theory Conference 2019

Introduction

09/30/2019 7

 Nonlinear MHD simulations are computationally expensive



European Fusion Theory Conference 2019

Introduction

09/30/2019 8

 Nonlinear MHD simulations are computationally expensive
 Reduced MHD models are less expensive

— Removal of fast magnetosonic waves (larger time step)
— Reduction of number of unknowns (less memory required)



European Fusion Theory Conference 2019

Introduction

09/30/2019 9

 Nonlinear MHD simulations are computationally expensive
 Reduced MHD models are less expensive

— Removal of fast magnetosonic waves (larger time step)
— Reduction of number of unknowns (less memory required)

 Available reduced models are either tokamak-specific, or do not satisfy 
div B = 0, or both



European Fusion Theory Conference 2019

Introduction

09/30/2019 10

 Nonlinear MHD simulations are computationally expensive
 Reduced MHD models are less expensive

— Removal of fast magnetosonic waves (larger time step)
— Reduction of number of unknowns (less memory required)

 Available reduced models are either tokamak-specific, or do not satisfy 
div B = 0, or both

 In the present work, a stellarator-capable model with div B = 0 was 
derived without using an ordering, where the reduction explicitly zeros 
out fast waves



European Fusion Theory Conference 2019

Introduction

09/30/2019 11

 Nonlinear MHD simulations are computationally expensive
 Reduced MHD models are less expensive

— Removal of fast magnetosonic waves (larger time step)
— Reduction of number of unknowns (less memory required)

 Available reduced models are either tokamak-specific, or do not satisfy 
div B = 0, or both

 In the present work, a stellarator-capable model with div B = 0 was 
derived without using an ordering, where the reduction explicitly zeros 
out fast waves

 This model is mostly a generalization of the tokamak-specific model by 
Breslau et al (Steven Jardin’s group, PPPL) and a similar model by Izzo 
et al
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 Any divergence-free field can be written as

 Let χ be the magnetic scalar potential, then χ ∇ is 
the vacuum field and B - χ ∇ is the induced field

 The curvilinear non-orthogonal coordinate system 
(α, β, χ) is a Clebsch-type system aligned to B

 We will denote the vacuum field as Bv = χ = ψ∇ ∇ v β⨯∇ v and the total field as 

B = Bv + Bind = ∇α β⨯∇
 There is another coordinate system (ψv, βv, χ) which is aligned to Bv; we use 

b for this system’s basis vectors

William D D’haeseleer, et al. Flux coordinates 
and magnetic field structure.
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 The third component was removed by gauge transform
 Total magnetic field (exact):

— ∇χ – background vacuum field (dominant), Ψ – field line 
bending, Ω – magnetic field compression (due to ζ)

— The Ω term also contains a correction to field line bending 
(∇‖ Ω✕∇ψv), but the Ψ term is dominant

 Velocity field (exact):

— Terms correspond to ExB velocity, parallel flow and fluid 
compression

— Terms contain Alfven waves, slow magnetosonic waves and 
fast magnetosonic waves

— First and last terms both capture pressure- and current-
driven instabilities

Magnetic field and velocity representations
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 Use the continuity and energy equations directly (plug in 
velocity and magnetic field)

 Project Faraday’s law on χ ∇ and ψ∇
v

 Apply the following projection operators on the Navier-Stokes 
equation after dividing by ρ, and inserting the RHS of the 
continuity equation

 The operators produce equations for Φ, v
||

 and ζ, respectively

 Commutator between projection operator and νΔ neglected
 Resulting equations are still full MHD
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Continuity:

Energy:

Magnetic potential:

Notation:
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Φ equation:

Shorthand expressions:
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v
||

 equation:

ζ equation:
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 Set ζ = Ω = 0 to remove fast magnetosonic waves and magnetic field 
compression

 Drop equations for ζ and Ω

 We now have

 In some cases, one can also set v
||

 = 0 and drop the v
||

 equation
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Continuity
:

Energy:

Magnetic potential:

Φ equation:

v
||

 equation:
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 Mass and energy conservation are exact since those 
equations are used directly, without neglecting terms

 Components of Faraday’s law and Navier-Stokes 
equation are dropped in reduction

 This leads to non-conservation of momentum and 
additional non-conservation of flux

 Importantly, reduced MHD approximation is only valid 
when the dropped terms are small, as discussed on 
the following slides
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 Magnetic flux through a surface S(t) (advected with the plasma) is 
defined as

— Taking the time derivative, applying Faraday’s and Ohm’s laws and 
Stokes’ theorem:

— Thus non-conservation is locally proportional to resistivity.
 Setting ζ = Ω = 0, the Ω equation is

— Thus, the reduction error is also locally proportional to resistivity
— Reduction error is also locally proportional to perpendicular current, 

which arises due to nonzero parallel derivatives of Ψ and gik, 
discussed on the next slide



European Fusion Theory Conference 2019

Non-conservation of momentum

09/30/2019 48

 If the vorticity equation holds, the Navier-Stokes equation is also satisfied



European Fusion Theory Conference 2019

Non-conservation of momentum

09/30/2019 49

 If the vorticity equation holds, the Navier-Stokes equation is also satisfied
 The first projection operator selects the contravariant χ-component of a 

vorticity-type equation
 Non-conservation is estimated by comparing the perpendicular 

components to the contravariant χ-component



European Fusion Theory Conference 2019

Non-conservation of momentum

09/30/2019 50

 If the vorticity equation holds, the Navier-Stokes equation is also satisfied
 The first projection operator selects the contravariant χ-component of a 

vorticity-type equation
 Non-conservation is estimated by comparing the perpendicular 

components to the contravariant χ-component

 Non-conservation is proportional to the parallel derivatives of: gik, Φ, Ψ, v
||

, 
p, ρ and P, where gik is the metric tensor of the vacuum field-aligned 
coordinate system



European Fusion Theory Conference 2019

Non-conservation of momentum

09/30/2019 51

 If the vorticity equation holds, the Navier-Stokes equation is also satisfied
 The first projection operator selects the contravariant χ-component of a 

vorticity-type equation
 Non-conservation is estimated by comparing the perpendicular 

components to the contravariant χ-component

 Non-conservation is proportional to the parallel derivatives of: gik, Φ, Ψ, v
||

, 
p, ρ and P, where gik is the metric tensor of the vacuum field-aligned 
coordinate system

 Exact for, e.g., strictly axisymmetric dynamics in a tokamak



European Fusion Theory Conference 2019

Non-conservation of momentum

09/30/2019 52

 If the vorticity equation holds, the Navier-Stokes equation is also satisfied
 The first projection operator selects the contravariant χ-component of a 

vorticity-type equation
 Non-conservation is estimated by comparing the perpendicular 

components to the contravariant χ-component

 Non-conservation is proportional to the parallel derivatives of: gik, Φ, Ψ, v
||

, 
p, ρ and P, where gik is the metric tensor of the vacuum field-aligned 
coordinate system

 Exact for, e.g., strictly axisymmetric dynamics in a tokamak

 Validity conditions: for all of the scalars above, |∂||| << |∇⟂|



European Fusion Theory Conference 2019

Non-conservation of momentum

09/30/2019 53

 If the vorticity equation holds, the Navier-Stokes equation is also satisfied
 The first projection operator selects the contravariant χ-component of a 

vorticity-type equation
 Non-conservation is estimated by comparing the perpendicular 

components to the contravariant χ-component

 Non-conservation is proportional to the parallel derivatives of: gik, Φ, Ψ, v
||

, 
p, ρ and P, where gik is the metric tensor of the vacuum field-aligned 
coordinate system

 Exact for, e.g., strictly axisymmetric dynamics in a tokamak

 Validity conditions: for all of the scalars above, |∂||| << |∇⟂|

 Error is small if the magnetic field is sufficiently strong that 
perpendicular dynamics are much slower than parallel dynamics



European Fusion Theory Conference 2019

Non-conservation of momentum

09/30/2019 54

 If the vorticity equation holds, the Navier-Stokes equation is also satisfied
 The first projection operator selects the contravariant χ-component of a 

vorticity-type equation
 Non-conservation is estimated by comparing the perpendicular 

components to the contravariant χ-component

 Non-conservation is proportional to the parallel derivatives of: gik, Φ, Ψ, v
||

, 
p, ρ and P, where gik is the metric tensor of the vacuum field-aligned 
coordinate system

 Exact for, e.g., strictly axisymmetric dynamics in a tokamak

 Validity conditions: for all of the scalars above, |∂||| << |∇⟂|

 Error is small if the magnetic field is sufficiently strong that 
perpendicular dynamics are much slower than parallel dynamics

 Should be a good approximation for most magnetic confinement 
devices
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 A physics-based ordering can be used to obtain a similar result
 Let λ be the small parameter and order as follows (mostly a generalization 

of (Strauss, 1997)):

 O(1): ρ, B
v
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v
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||

, η, ν, D⟂, κ⟂, Sρ
, ∂||, ∂/∂t

 O(λ2): ζ, p, Ω
 O(λ3): Ω, S

e
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 Applying this ordering to the full MHD equations, we get similar, though 
much simpler equations with the following major differences from the non-
ordering-based equations:
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 A physics-based ordering can be used to obtain a similar result
 Let λ be the small parameter and order as follows (mostly a generalization 

of (Strauss, 1997)):

 O(1): ρ, B
v
, F

v
, κ

||
, ∇⟂

 O(λ): Ψ, Φ, v
||

, η, ν, D⟂, κ⟂, Sρ
, ∂||, ∂/∂t

 O(λ2): ζ, p, Ω
 O(λ3): Ω, S

e

 Applying this ordering to the full MHD equations, we get similar, though 
much simpler equations with the following major differences from the non-
ordering-based equations:
 Advection due to parallel velocity is neglected due to being higher 

order than ExB advection
 In the Φ and v

||
 equations, B is approximated by B

v
 in the time 

derivative, Lorentz force term and projection operator
 Hydrodynamic and ram pressure drop from the v

||
 equation
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 Derived a hierarchy of MHD models suitable for 
stellarators: full MHD, reduced MHD with parallel 
velocity, reduced MHD without parallel velocity

 Also suitable for astrophysical systems with a strong 
guide field, since toroidal geometry was not assumed 
in the derivation

 Divergence free field and good conservation 
properties
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 Equations are presently being implemented in the JOREK non-linear MHD 
code [Huysmans and Czarny]

 Tokamak limit should be similar to the present JOREK and will be tested as 
next step

 Then, extend JOREK grid to 3D and investigate quasi-axisymmetric stellarators

Axisymmetric grids in JOREK. 
Flux-aligned grid is in red.

0

π/4

π/2

3π/4

Flux-aligned grid 
for a quasi-
axisymmetric 
stellarator at 
various toroidal 
angles. To be 
implemented.
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