State-of-the-art modeling of impurity transport in stellarators

J. M. García-Regaña.

CIEMAT

XVIII European Fusion Theory Conference

Ghent, 7 October 2019

- CIEMAT J. L. Velasco, I. Calvo, A. González-Jerez, T. Estrada, D. Carralero, E. Sánchez, A. Alonso and TJ-II Team.
- PPPL A. Mollén, N. Pablant.
- U. Oxford M. Barnes and F. Parra.
- Max Planck IPP H. Smith, R. Kleiber, J. Alcusón, A. Langenberg, P. Xanthopoulos, A. Zocco.
- NIFS S. Satake and K. Fujita.
- and W7-X team.

Experimental motivation

- Stellarators count with a number of situations with reduced impurity core confinement that **standard neoclassical modeling** have not successfully modeled.
- These situations are best exemplified by the LHD impurity hole plasmas (left figure), the high-density-H (HDH) mode W7-AS plasma (right fig. ◊).

Standard neoclassical modelling:

- Radially local monoenergetic (r and v are mere parameters) DKES [Hirshman PF'86] based calculations.
- Trucated electric field (only radial, E_r) and incompressible form of $E_r \times B$ drift.
- Pitch-angle-scattering collisions, with momentum conservation schemes, of limited application to impurity calculations.

[Ida PoP'11] (left) ; [McCormick PRL'02] (right)

⇒ Recent intense code development and analytical effort to improve the modeling of collisional impurity transport.

2 Improvements on code development and analytical theory

3 Comparison with the experiment

4 Gyrokinetic quasilinear and nonlinear transport of impurities

5 Summary

Improvements on code development and analytical theory

3 Comparison with the experiment

4 Gyrokinetic quasilinear and nonlinear transport of impurities

5 Summary

Basic features of neoclassical electric fields in stellarators

Neoclassical radial fluxes (Γ) are not intrinsically ambipolar in stellarators for E_r = 0. E_r is constrained by:

$$\sum_{lpha} Z_{lpha} e \Gamma_{lpha}(E_r) = 0.$$

Over the flux surfaces unbalanced charge density leads the plasma to generate a potential φ₁ to preserve quasineutrality.

 φ_1 scaling at low ν_{*i} [Calvo JPP'18]

- In stellarators φ₁ ~ ν_{*i}⁻¹ in the 1/ν regime up to constant values reached at either at the √ν-regime (large E_r) or superbanana-plateau regime (low E_r).
- In tokamaks $\varphi_1 \sim \nu_{*i}$ at low collisionality.
- The *E* × *B* and magnetic drifts become comparable as *Z* increases:

$$\mathbf{v}_m \cdot \nabla r \sim \mathbf{v}_{E1} \cdot \nabla r.$$

• The electrostatic and magnetic trapping become comparable as *Z* increases:

$$\mu \nabla_{\parallel} B \sim Z e \nabla_{\parallel} \Phi_1.$$

(ロト 4回 4 回 + 4回 4 4回)

The impact φ_1 and its importance for impurity transport

- Impact of φ_1 on Γ_Z confirmed for $e\varphi_1/T_i \lesssim 0.05$ and low-Z impurities like C⁶⁺ [Regaña PPCF'13, Regaña NF'17].
- The *phase* of f_{1Z} respect to $(\mathbf{v}_m + \mathbf{v}_{E1}) \cdot \nabla r$ underlies the impact of φ_1 on the Γ_Z .

The impact φ_1 and its importance for impurity transport

• Impact of φ_1 on Γ_Z confirmed for $e\varphi_1/T_i \lesssim 0.05$ and low-Z impurities like C⁶⁺ [Regaña PPCF'13, Regaña NF'17].

 $\Gamma_{Z} = \left\langle \int f_{1Z}(\mathbf{v}_{m} + \mathbf{v}_{E1}) \cdot \nabla r \mathrm{d}^{3} v \right\rangle$

• The *phase* of f_{1Z} respect to $(\mathbf{v}_m + \mathbf{v}_{E1}) \cdot \nabla r$ underlies the impact of φ_1 on the Γ_Z .

- Without φ_1 .
- $(\mathbf{v}_m + \mathbf{v}_{E1}) \cdot \nabla r$ and n_{1Z} for C^{6+}
- Radial (inward or outward) drifts do not preferentially overlap high or low C⁶⁺ density regions.
- \Rightarrow Weakier inward flux

□ ▶ 《□ ▶ 《 = ▶ 《 = ▶ 《□ ▶ 《○

What to improve respect to first EUTERPE simulations of φ_1 and Γ_Z [Regaña NF'17]?

- EUTERPE is a δf PIC code, radially global on its gyrokinetic version.
- In this presentation we use the radially local <u>neoclassical version</u>.
- It solves

$$\frac{\partial f_1}{\partial t} + \mathbf{R}^{\mathbf{0}} \cdot \nabla f_1 + \dot{v}_{\parallel}^0 \frac{\partial f_1}{\partial v_{\parallel}} = -f_{\mathsf{M}} \left(\mathbf{v}_m + \mathbf{v}_{E1} \right) \cdot \nabla r \left[\frac{n'}{n} + \frac{Ze}{T} E_r + \left(\frac{mv^2}{2T} - \frac{3}{2} + \frac{Ze}{T} \Phi_1 \right) \frac{T'}{T} \right] + \mathcal{C}(f).$$

$$\Phi_1 = \frac{T_e}{e} \left(n_{0e} + n_{0i} \frac{T_e}{T_i} \right)^{-1} \left(n_{1i} - n_{1e} \right).$$

- **1** The guiding center trajectory $\dot{\mathbf{R}}^0$ does not retain the **magnetic drift** (neither the component accross the surface nor the tangential component $\mathbf{v}_m \cdot \nabla \alpha$).
- \Rightarrow Neglecting $\mathbf{v}_m \cdot \nabla \alpha \rightarrow$ unrealistic situation with vanishing drift over flux surface when $E_r = 0$.
- \Rightarrow Unphysically large size of f_1 and its moments (including φ_1) in the vicinity of $E_r = 0$.
- 2 The collision operator used included only pitch-angle-scattering, with questionable application to moderate to high collisional impurities.
- 3 Integration timestep has to be reduced a factor of $O(\sqrt{m_e/m_i})$ when kinetic electrons need to be considered.

2 Improvements on code development and analytical theory

3 Comparison with the experiment

4 Gyrokinetic quasilinear and nonlinear transport of impurities

5 Summary

The importance of $\mathbf{v}_m\cdot \nabla \boldsymbol{\alpha}$ and the code KNOSOS

KNOSOS [Velasco (2019) arXiv:1908.11615]

• **Bounce-averaged** local neoclassical code that, following [Calvo, PPCF'17], consistently solves at low collisionality and arbitrary geometry:

Drift kinetic equation (DKE) \rightarrow *g*^{*b*} and fluxes like Γ and *Q*;

Ambipolarity condition $\rightarrow E_r$;

Quasi-neutrality equation $\rightarrow \varphi_1$;

- It includes analytically exact tangential magnetic drift $\mathbf{v}_m \cdot \nabla \alpha$.
- O(1) min. of computing time per flux surface, $\times 2$ if kinetic electrons are included.

Effect of the $\mathbf{v}_m \cdot \nabla \alpha$ on φ_1 and benchmark for an LHD case

 g_b is the departure of distribution function from a Maxwellian; $\alpha = \theta - \iota \zeta$ labels magnetic field lines in the second structure of the second st

Alternatively, the full drift trajectories can be integrated, i.e. perform a radially global simulation.
 FORTEC-3D [Satake PFR'06], a PIC δf radially global (5D) code, has found corrections to EUTERPE's φ₁ as those found by KNOSOS in the situations where v_m · ∇α can be important [Fujita PFR'19].

· □ > 《 🗗 > 《 볼 > 《 볼 > · 볼 | 볼 · 이익()?

The importance of the collision operator and the code SFINCS

 The linearized impurity-main ion collision can be
 √m_i/m_Z-expanded to see that three main pieces controls Γ_Z: I) pitch-angle and energy diffusion; II) friction against main ions; III) main ion pressure anisotropy [Mollén PoP'15].

$$C_{Zi}^{l}[F_{1Z};h_{i}] = \underbrace{\frac{\nu_{Zi}T}{m_{Z}}\nabla_{\mathbf{v}}\cdot\left[F_{MZ}\nabla_{\mathbf{v}}\left(\frac{F_{Z1}}{F_{MZ}}\right)\right]}_{(III)} + \underbrace{\frac{\nu_{Zi}m_{Z}}{T}Av_{\parallel}}_{(III)} - \underbrace{\frac{\nu_{Zi}m_{Z}}{T}\left(\operatorname{tr}(\overset{\leftrightarrow}{M}) - \frac{m_{Z}}{T}\overset{\leftrightarrow}{M}:\mathbf{vv}\right)}_{(III)}.$$

- (II) and (III) depend on main ion distribution h_i through A and M.
- (II) is responsible for parallel momentum conservation; (III) can be important in stellarators [Calvo arXiv: 1907.08482, see **P1-05**].

SFINCS [Landremann PoP'14]

- Local neoclassical (4D) δf continuum code that consistently solves, for arbitrary geometry, DKE, ambipolar condition and quasi-neutrality.
- It includes all these effects, as it implements the **linearized Fokker-Planck collision operator**.
- Multispecies at non-trace concentration.

EUTERPE PAS and mass-ratio-expanded collision operator (w/o III) vs. SFINCS .

- When the main ions are low collisional and the impurities are in the Pfirsch-Schlüter regime:
- \rightarrow if $\varphi_1 = 0$ the dependence of Γ_Z on E_r vanishes. [Helander PRL'17] \rightarrow more likely screening.
- → if $\varphi_1 \neq 0$ the dependence of Γ_Z on E_r is recovered, even at low φ_1 values [Calvo NF'18, Buller JPP'18].

$$\begin{split} &\Delta\varphi_1 = \varphi_1^{\max} - \varphi_1^{\min} \text{ for W7-X, } r/a = 0.8, \ T_i = 1.9 \text{ keV,} \\ &d_r \log T_i = -6.8, \ T_e = 1.3 \text{ keV, } d_r \log T_e = -6.5, \\ &n_i = 1.15 \times 10^{20} \text{ m}^{-3} \text{ } d_r \log n_i = -5.8. \end{split}$$

• When the main ions are low collisional and the impurities are in the Pfirsch-Schlüter regime:

- \rightarrow if $\varphi_1 = 0$ the dependence of Γ_Z on E_r vanishes. [Helander PRL'17] \rightarrow more likely screening.
- → if $\varphi_1 \neq 0$ the dependence of Γ_Z on E_r is recovered, even at low φ_1 values [Calvo NF'18, Buller JPP'18].

- w/o φ₁: The monotonic flux dependence on E_r weakens, or equivalently Γ_Z(E_r) flattens.
- w/ φ₁: Monotonic linear dependence Γ_Z(E_r) vanishes resulting on regions with weaker and enhanced inward flux.
- The numerically simulated flux level agree reasonably well with analytical prediction.
- To what extent moderation of inward (or even outward) Γ_Z are expected when E_r < 0? →
 comprehensive scans of plasma parameters.

• When the main ions are low collisional and the impurities are in the Pfirsch-Schlüter regime:

- \rightarrow if $\varphi_1 = 0$ the dependence of Γ_Z on E_r vanishes. [Helander PRL'17] \rightarrow more likely screening.
- → if $\varphi_1 \neq 0$ the dependence of Γ_Z on E_r is recovered, even at low φ_1 values [Calvo NF'18, Buller JPP'18].

- w/o φ₁: The monotonic flux dependence on E_r weakens, or equivalently Γ_Z(E_r) flattens.
- w/ φ_1 : Monotonic linear dependence $\Gamma_Z(E_r)$ vanishes resulting on regions with weaker and enhanced inward flux.
- The numerically simulated flux level agree reasonably well with analytical prediction.
- To what extent moderation of inward (or even outward) Γ_Z are expected when $E_r < 0$? \rightarrow comprehensive scans of plasma parameters.

- When the main ions are low collisional and the impurities are in the Pfirsch-Schlüter regime:
- \rightarrow if $\varphi_1 = 0$ the dependence of Γ_Z on E_r vanishes. [Helander PRL'17] \rightarrow more likely screening.
- → if $\varphi_1 \neq 0$ the dependence of Γ_Z on E_r is recovered, even at low φ_1 values [Calvo NF'18, Buller JPP'18].

J. M. García-Regaña (CIEMAT)

- w/o φ₁: The monotonic flux dependence on E_r weakens, or equivalently Γ_Z(E_r) flattens.
- w/ φ₁: Monotonic linear dependence Γ_Z(E_r) vanishes resulting on regions with weaker and enhanced inward flux.
- The numerically simulated flux level agree reasonably well with analytical prediction.
- To what extent moderation of inward (or even outward) Γ_Z are expected when $E_r < 0$? \rightarrow comprehensive scans of plasma parameters.

- When the main ions are low collisional and the impurities are in the Pfirsch-Schlüter regime:
- \rightarrow if $\varphi_1 = 0$ the dependence of Γ_Z on E_r vanishes. [Helander PRL'17] \rightarrow more likely screening.
- → if $\varphi_1 \neq 0$ the dependence of Γ_Z on E_r is recovered, even at low φ_1 values [Calvo NF'18, Buller JPP'18].

- w/o φ₁: The monotonic flux dependence on E_r weakens, or equivalently Γ_Z(E_r) flattens.
- w/ φ₁: Monotonic linear dependence Γ_Z(E_r) vanishes resulting on regions with weaker and enhanced inward flux.
- The numerically simulated flux level agree reasonably well with analytical prediction.
- To what extent moderation of inward (or even outward) Γ_Z are expected when $E_r < 0? \rightarrow$ comprehensive scans of plasma parameters.

Analytical formulas + KNOSOS

- Analytical formulas for Γ_Z for trace impurities and large-aspect ratio in the mixed collisionality regime available in [Calvo NF'18, Buller JPP'19].
- Extended to include main-ion pressure anisotropy (III) for low ν_{*i} and different collisionality regimes for impurities in [Calvo arXiv: 1907.08482] (see **P1-05**).
- Formulas depend on the main ion distribution *h_i*, which need to be numerically worked out:

KNOSOS $\xrightarrow{h_i}$ Analytical formulas for Γ_Z

- In W7-X (top), weaker φ_1 leads to $V_Z > 0$ for $\partial \log T_i/2 < \partial_r \log n_i$.
- In LHD (bottom), stronger φ₁ leads to V_Z > 0 restricted to ∂_r log n_i > 0.

 $V_{W^{44}}$ as function of $\partial_r \log n_i$ and $\partial_r \log T_i$. $n_e = 6.3 \times 10^{19} \text{ m}^{-3}$, $T_b = 1.7 \text{ keV}$. 600 runs. 2 Improvements on code development and analytical theory

3 Comparison with the experiment

4 Gyrokinetic quasilinear and nonlinear transport of impurities

5 Summary

LHD impurity hole with SFINCS

- (Q)
- The impurity hole plasma simulated with SFINCS [Mollén PPCF'18] (exact F-P collision operator, multispecies (at non-trace concentration), including φ_1 yields:
- Huge corrections to standard neoclassical calculations.
- Impact goes in the opposite direction to what experiment indicates (inward Γ_Z considerably enhanced).

F-P w/o φ_1 ; PAS w/o φ_1 ; F-P w/ φ_1 ; PAS w/ φ_1 ; DKES + momentum conserv.

- Past experiments have measured differences on plasma potential attributable to $\Delta \varphi_1$ [Pedrosa NF'15].
- Doppler reflectometry (DR) has measured at different poloidal and toroidal positions appreciable difference on the total radial electric field [Estrada NF'19].
- Contribution from $-d\Phi_1/dr$ to the total radial electric field calculated with EUTERPE [Regaña PPCF'18] and KNOSOS .
- Radial electric field contribution from -d_rφ₁ is negligible with adiabatic electrons.
- Including kinetic electrons matters and -d_rφ₁ correction become appreciable althought not to the level the DR system observes.

- Past experiments have measured differences on plasma potential attributable to $\Delta \varphi_1$ [Pedrosa NF'15].
- Doppler reflectometry (DR) has measured at different poloidal and toroidal positions appreciable difference on the total radial electric field [Estrada NF'19].
- Contribution from $-d\Phi_1/dr$ to the total radial electric field calculated with EUTERPE [Regaña PPCF'18] and KNOSOS .
- Radial electric field contribution from -d_rφ₁ is negligible with adiabatic electrons.
- Including kinetic electrons matters and -d_rφ₁ correction become appreciable althought not to the level the DR system observes.

Γ_Z in W7-X#180919.055

- Numerical analyses of W7-X discharges have recently been approached with these tools.
- The agreement between the codes is found where they are expected to agree.
- The differences between SFINCS and EUTERPE on φ_1 or collision operator translate into small difference on neoclassical fluxes.

Γ_Z in W7-X#180919.055

- Numerical analyses of W7-X discharges have recently been approached with these tools.
- The agreement between the codes is found where they are expected to agree.
- The differences between SFINCS and EUTERPE on φ₁ or collision operator translate into small difference on neoclassical fluxes.

Γ_Z in W7-X#180919.055

- Numerical analyses of W7-X discharges have recently been approached with these tools.
- The agreement between the codes is found where they are expected to agree.
- The differences between SFINCS and EUTERPE on φ₁ or collision operator translate into small difference on neoclassical fluxes.

- $D_{Ar^{16+}}$ is strongly underestimated. XICS-measured V_Z and neoclassical estimate coincide in sign, but disagree in a factor of O(10).
- Including classical flux, which can be important in W7-X [Buller JPP'19], strongly modifies V_Z in the mid outer regions \rightarrow to what extent the difference on V_Z and D_Z are attributtable to turbulence?

2 Improvements on code development and analytical theory

3 Comparison with the experiment

4 Gyrokinetic quasilinear and nonlinear transport of impurities

5 Summary

The code stella [1]

Code characteristics

- Eulerian + semi-Lagrange, delta-f nonlinear gyrokinetic code.
- Mixed implicit-explicit scheme.
- Multiple ion species + kinetic electrons.
- General nested flux surface geometry (including interface with VMEC).
- Currently flux tube, full flux surface under development.
- Benchmarked against GS2. Ongoing stellarator specific benchmark against GENE.
- Coupled to SFINCS for neoclassical equilibrium and φ_1 (coupling with KNOSOS foreseen).

Selected stella /GENE benchmark results: frequency $\omega(k_x)$ for an ITG case w/ adiabatic e⁻ (top); growth rate $\gamma(k_y)$ for a TEM case (bottom) [A. G. Jerez *in progress*.]

[1] M. Barnes, F. I. Parra and M. Landreman J. Comput. Phys. (2019) の・モン・モン モー つへで

Impurity transport modeling

• In the trace impurity limit it can be written a transport law of the form:

$$\Gamma_Z^{\rm ql} = -n_Z \left(D_{Z1} \frac{\mathrm{d} \ln n_Z}{\mathrm{d} r} + D_{Z2} \frac{\mathrm{d} \ln T_Z}{\mathrm{d} r} + C_Z \right),$$

For sufficiently heavy impurities, with bounce (ω_{bZ}) and drift (ω_{dZ}) frequencies, in the presence of an instability with fluctuating potential φ, frequency ω and k_⊥ρ_i ≤ 1:

$$\omega/\omega_{bZ} \gg 1$$
 and $\omega/\omega_{dZ} \gg 1$.

• Then, the solution of the GK eq. for the impurity distribution function g_Z leads to:

$$D_{Z1} = \frac{\gamma k_{\alpha}^{2}}{\omega^{2} + \gamma^{2}} \left\langle \phi^{2} \Gamma_{0}(b) \right\rangle$$
$$D_{Z2} = \frac{\gamma k_{\alpha}^{2}}{\omega^{2} + \gamma^{2}} \left\langle \phi^{2} b \left[\Gamma_{1}(b) - \Gamma_{0}(b) \right] \right\rangle$$
$$C_{Z} = 0$$

with $b = k_{\perp}^2 T_Z / m_Z \Omega_Z^2$, $\Gamma_n(b) = I_n(b)e^{-b}$.

Quasilinear transport of impurities with stella

- Accounting for the specific ϕ structure, growth rate, frequency, magnetic geometry, parallel impurity dynamics (not included in analytical treatment) requires a numerical approach.
- Collisions are not included.

• W7-X (std. config.), r/a = 0.8 with $T_i = T_e = 0.5$ keV, $a/L_{T_i} = a/L_{T_e} = 6.0$ and $a/L_{n_i} = a/L_{n_e} = 1.0$.

• The calculated impurity radial flux of a linear GK simulation (Γ_Z) allows, defining Γ_Z^{ql} as:

$$\Gamma_{Z}^{\rm ql} = \Gamma_{Z} \frac{\omega^{2} + \gamma^{2}}{\gamma k_{y}^{2} \langle \phi^{2} \rangle},$$

to work out the spectra, relative sizes and sign of D_{Z1} , D_{Z2} and C_Z^{1} .

¹For characterizing LHD impurity hole plasma see [Mikkelsen PoP'14].

J. M. García-Regaña (CIEMAT)

Impurity transport modeling

(ㅁ) 《륜) 《혼) 《혼) 혼(속) 신오?

- $D_{Z1} \Rightarrow$ **outward-directed** Γ_Z^{ql} while $D_{Z2} \Rightarrow$ (much weaker) **inward-directed** Γ_Z^{ql} .
- Covection term C_Z introduces additional **inward-directed** Γ_Z^{ql} contribution.
- Weak mass or Z-dependence observed [Barnes PRL'12], with the exception of the D_{Z2} at low k_y .
- Γ_Z^{ql} abruptly decreases once the electron-driven (ETG) instability is found at $k_y \rho_i > 6$.

J. M. García-Regaña (CIEMAT)

- $D_{Z1} \Rightarrow$ **outward-directed** Γ_Z^{ql} while $D_{Z2} \Rightarrow$ (much weaker) **inward-directed** Γ_Z^{ql} .
- Covection term C_Z introduces additional **inward-directed** Γ_Z^{ql} contribution.
- Weak mass or Z-dependence observed [Barnes PRL'12], with the exception of the D_{Z2} at low k_y .
- Γ_Z^{ql} abruptly decreases once the electron-driven (ETG) instability is found at $k_y \rho_i > 6$.

J. M. García-Regaña (CIEMAT)

- Preliminary nonlinear analyses have begun.
- W7-X (std. config.) at r/a = 0.8 with $T_i = T_e = 0.5$ keV, $a/L_{T_i} = 6.0$ and $a/L_{n_i} = 1.0$. adiabatic electrons:

	Quasilinear	Nonlinear			
$D_{Z1}=D_Z$	> 0	1.6			
D_{Z2}	< 0	-0.02			
C_Z	> 0	-1.38			
V	< 0	1.1			
$\overline{[D_Z]} = \Gamma_{gB} n_i^{-1} m ; [C_Z] = [V] = \Gamma_{gB} n_i^{-1}.$					

- Nonlinear simulations show (and QL analyses capture too) strong outward-directed n'_Z-driven diffusion, and weak inward-directed thermo-diffusion.
- Nonlinearly **anti-pinch** (*C_Z*) is found, which contradicts QL analysis.

Summary

• The basic understanding of collisional impurity radial transport has improved due to an intense code and analytical theory development in recent years.

	EUTERPE ²	SFINCS	KNOSOS + analyt. Γ_Z	FORTEC-3D
Kind	Monte-Carlo δf	Eulerian δf	Bounce-averaged δf_i	Monte-carlo δf_i
Geometry	General/VMEC	General/VMEC	General/VMEC	General/VMEC
Local/global	Local	Local	Local	Global
$\mathbf{v}_{m}\cdot abla lpha^{\dagger}$	None	Model	Analytically exact.	Included
C(f) for Z	$\sqrt{m_i/m_Z}$ -expanded ³	Linearized Fokker-Planck	Analy. eval. Γ _Ζ	Model for C_{ab}
C(f) for i,e	Model for C_{aa}	Exact Fokker-Planck	PAS ⁴	Model for C_{ab}
CPU usage	Intense	Moderate/intense	Light	Intense

• The benchmark work has quantitatively confirmed the impact of neoclassical effects, traditionally neglected, that are important for an accurate evaluation of neoclassical Γ_Z .

- Experimental confirmation of predictions has been moderate (e.g. φ_1 measurements, of convection V_Z in selected LHD plasmas) but also made evident big gaps, for instance, D_Z .
- First quasilinear and nonliner simulations carried out in order to study the role of gyrokinetic turbulence on Γ_Z .

- $^{3}w/o$ pressure anisotropy terms.
- ⁴Pitch angle scattering.

²Neoclassical version of the code EUTERPE

[†]Tangential magnetic drift. Necessary for $E_r \ll T/(ea)$, when superbanana plateau regime is accessed [Calvo PPCF'17].

Backup slides

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶

Quasilinear transport of impurities with stella (V and D).

• Expressing the flux in terms of the conventional diffusion and convection coefficient D_Z and V_Z :

$$\frac{\Gamma_Z^{\rm ql}}{n_Z} = -D_Z \frac{{\rm d}\ln n_Z}{{\rm d}r} + V_Z$$

 V_Z can be obtained for a specific value of T'_Z . Setting $a/L_{T_Z} = a/L_{T_i} = -6.0$ yields:

• Expressing the flux in terms of the conventional diffusion and convection coefficient D_Z and V_Z :

$$\frac{\Gamma_Z^{\rm ql}}{n_Z} = -D_Z \frac{{\rm d}\ln n_Z}{{\rm d}r} + V_Z$$

 V_Z can be obtained for a specific value of T'_Z . Setting $a/L_{T_Z} = a/L_{T_i} = -6.0$ yields:

• V_Z and D_Z have opposite sign, which would lead to peaked n_Z profiles.

• V_Z and D_Z have comparable size, which conflicts with the conclusion about V_Z and D_Z set by different mechanisms (NC or turb.) given their calculated values.