

#### 18<sup>th</sup> European Fusion Theory Conference, 7-10<sup>th</sup> october 2019, Ghent



H. Baty - 18th EFTC conference, 7-10th october 2019, Ghent, Belgium

# **Motivation: solar flares & tokamak disruptions**

UNIVERSITÉ DE STRASBOURD Observer & comprendre

#### Eruptive events in strongly magnetized plasmas => fast magnetic reconnection !

Solar flare in the solar corona (in UV by TRACE satellite)

Flare: sudden and fast brightening (few minutes)

 $\begin{array}{l} \mbox{Magnetic energy released} \sim 10^{25} \mbox{ joules in (60000 km)}^3 \\ \mbox{-heating} \end{array}$ 

-plasma acceleration (blobs, particles)

(i) Thermal kink mode => sawtooth crash

topology reorganisation

Internal disruption in tokamaks (ASDEX-upgrade)

=> Alfvénic time scale





 $V_A$ : Alfvén speed (with upstream reversal field component  $B_u$ )

 $S = LV_A/\eta$  (Lundquist number)

 $\eta$  : plasma resistivity (magnetic diffusivity)

(viscosity is neglected)







- Plasmoids formation SP current sheet  $(L/\delta \approx S^{1/2})$  is unstable when  $S > S_c (S_c \sim 10^4)$
- Linear theory Loureiro et al. 2007 => growth rate  $\gamma_p L/V_A \sim S^{1/4}$ , and  $k_p L \sim S^{3/8}$
- Viscosity effect (P<sub>m</sub> = ν/η) Comisso & Grasso 2016 => γ<sub>p</sub> L/V<sub>A</sub> ~ S<sup>1/4</sup> (1+P<sub>m</sub>)<sup>-5/8</sup> and k<sub>p</sub> L ~ S<sup>3/8</sup> (1+P<sub>m</sub>)<sup>-3/16</sup>
- Confirmed by MHD numerical simulations using static/stationary SP current layers as an initial set-up – Samtaney et al. 2009

+ non linear evolution =>

New regime of reconnection with an accelerated rate ~  $10^{-2}$  independent of *S* 







Bhattacharjee et al. 2009



- Plasmoids formation SP current sheet ( $L/\delta \approx S^{1/2}$ ) is unstable when  $S > S_c$  ( $S_c \sim 10^4$ )
- Linear theory Loureiro et al. 2007 => growth rate  $\gamma_p L/V_A \sim S^{1/4}$  and  $k_p L \sim S^{3/8}$

| at t <sub>1</sub> | t <sub>2</sub> > t <sub>1</sub> | $t_3 > t_2 > t_1$ |
|-------------------|---------------------------------|-------------------|

Controversy arose on the plasmoids growth (γ<sub>p</sub> -> ∞ as S -> ∞ contradicts frozen-in law)
 Pucci & Velli (2014): currents sheets with L/δ ≈ S<sup>1/3</sup> => linear growth rate γ<sub>p</sub> L/V<sub>A</sub> ≈ 1
 Comisso et al. (2016): dynamically forming SP sheets => non simple power laws for γ<sub>p</sub>, k<sub>p</sub> (dominant mode => least time), γ<sub>p</sub> can be super-Alfvénic but remains finite for infinite S, and previous power laws are valid for S -> S<sub>c</sub>

2) Non linear stage in simulations => the reco. rate of ~  $10^{-2}$  independent of *S*, is a time-averaged value during a time-dependent stochastic reconnection regime, it but is not

clearly explained !

The

The aim of this talk !

## **FINMHD code**



• Choice of MHD model (2D incompressible)  $\rightarrow$  J -  $\omega$  formalism

Reduced MHD equations (current density  $J - vorticity \omega$ ) -> <u>1<sup>st</sup> time used for reconnection/plasmoids</u>



- -> zero divergence of magnetic field and velocity field are ensured
- -> nearly symmetric form
- -> maximum spatial derivative is  $2^{nd}$  order (standard  $\psi$   $\omega$  model is  $3^{rd}$  order)

## **FINMHD code**



#### • $J - \omega$ formalism : space/time discretization

$$\begin{bmatrix} \frac{\omega^{n+1} - \omega^n \circ X^n}{\Delta t} - (\vec{B}^n \cdot \vec{\nabla}) J^{n+1} - \nu \nabla^2 \omega^{n+1} = 0\\ \frac{J^{n+1} - J^n \circ X^n}{\Delta t} - (\vec{B}^n \cdot \vec{\nabla}) \omega^{n+1} - \eta \nabla^2 J^{n+1} = F^n(\phi, \psi) \end{bmatrix}$$

$$\nabla^2 \phi^{n+1} = -\omega^{n+1}$$

$$\nabla^2 \psi^{n+1} = -J^{n+1}$$

-> <u>A finite-element discretization</u>: Lagrange second order – triangular  $P_2$  $\Rightarrow$  <u>Characteristic Galerkin method</u>

-> <u>A semi-implicit scheme</u>: (1<sup>st</sup> order and 2<sup>nd</sup> order predictor-corrector versions with <u>adaptive time step</u> are developed) <- n means at *t*<sup>n</sup>

 $\frac{D\omega}{Dt} = (\frac{\partial}{\partial t} + \vec{V}.\vec{\nabla})\omega \longrightarrow \frac{\omega^{n+1} - \omega^n \circ X^n}{\Delta t}$ 

for Lagrangian derivative => Method of characteristics (Pironneau method 1988)

Code optimization: internship of I. Moufid (2018) Freefem++ software (see https://freefem.org/, F. Hecht & coll.): -matrix (stiffness/mass) elements are automatically assembled -large choice of (direct and iterative) linear solvers -efficient <u>spatial adaptivity method</u> (Hessian of J) -> <u>non structured</u> <u>adaptive mesh</u> ! => FINMHD code - see Baty 2019 in ApJS 243, 23

## Which setup ?



• Ideally stable and resistively unstable Harris-type current layer



-> used by Velli and coll.

(codes with at least one periodicity in general) probably not the best setup for our aim !

#### • Ideally unstable configuration (current-driven mode)



-> used by Bhattacharjee and coll. (the current layer is in direct contact with the numerical boundary + initial arbitrary layer) See Huang et al. 2017 -> similar study !

-> never used to study magnetic reconnection except by Keppens et al. 2014 (numerical boundary can be chosen far and two twin current sheets are self-consistently formed)



Magnetic reconnection with plasmoids during Tilt instability - SP regime ۲

> of current density



Initial setup (dipole vortex - see Richard et al. 1990) **Circular boundary is numerically advantagous** 



Two times: during tilt and at saturation

Case with  $P_m = 1$ ,  $1/\eta = 10^3 \Rightarrow S \approx 1500$  (as  $S = LV_A/\eta$  is a posteriori estimated)





Magnetic reconnection with plasmoids during Tilt instability - <u>SP regime</u>



Initial setup (dipole vortex) Circular boundary is numerically advantagous



Two times: during tilt and at saturation





Magnetic reconnection with plasmoids during Tilt instability - <u>SP regime</u>



**Initial setup** 



Two times: during tilt and at saturation





#### Magnetic reconnection with plasmoids during Tilt instability - <u>Plasmoid regime</u>



#### Maximum current density at different S

Plasmoids appear for  $S \ge 5 \times 10^3$ in this study !

```
(for coalescence S_c \approx 3 \times 10^4)
```

-> 2<sup>nd</sup> asterisk: plasmoids visible in the current layer -> 3<sup>th</sup> asterisk: plasmoids fully break up the layer followed by stochastic reconnection

qualitatively agree with Comisso theory: quiescent phase followed by an explosive phase with a super-Alfvénic growth is predicted

(Saturated value to 300) colored contour map of one (zoom-in) current sheet at disruption time:



#### • Magnetic reconnection with plasmoids during Tilt instability - Plasmoid regime



#### Maximum current density at different S

 $t_p$ : time delay for first plasmoids to appear (between 2 first asterisks)

 $\gamma_p$ : 2<sup>nd</sup> slope -> interpreted as a dominant mode growth rate see Huang et al. 2017 using coalescence mode, phase related to plasmoids width ~ inner resistive layer width

(Saturated) Colored contour map of one (zoom-in) current sheet



#### • Magnetic reconnection with plasmoids during Tilt instability - Plasmoid regime



#### Plasmoid growth at different S

- $t_p \rightarrow 1.2 t_A \sim t_{tilt}$
- agree with Udzensky & Loureiro 2016, Tolman et al. 2018
- agree with simulations of Huang et al. 2017

 $\gamma_p \sim S^{1/4}$  valid only for intermediate S

and saturates with value of order 20  $t_A^{-1}$  for highest S

- partly agree with Comisso et al. 2016
- mostly agree with Huang et al. 2017
- disagree with Pucci & Velli 2014

Number of plasmoids at saturation,  $N_p$ , scales as  $S^{3/8}$  for intermediate S and tends to saturate for highest S

- partly agree with Comisso et al. 2016
- mostly agree with Huang et al. 2017

smaller values for small S -> outflow reconnection effect !



#### Magnetic reconnection with/without plasmoids during Tilt instability



FKR modes <-> Coppi modes ?

The normalized <u>reconnection rate</u> in the plasmoid-dominated regime is estimated as:

 $\eta J_{max}$  / (V<sub>A</sub> B<sub>u</sub>)  $\approx$  0.014 independent of *S* that is two times higher than for coalescence Huang et al. 2017

It can be hardly explained by the fractal (heuristic) model with hierarchical plasmoid chains requiring  $N \sim L/L_c \sim S/S_c >> N_p (L_c \text{ is the smallest marginally})$ stable critical layer length) Huang & Bhattacharjee 2010, Uzdensky et al. 2010

-> to be explored with longer time simulations !



#### • Tilt instability is an interesting setup to study the formation of plasmoids & reconnection

-> Transition between Sweet-Parker and plasmoid regime at  $S_c \approx 5 \times 10^3$  (for coalescence  $S_c \approx 3 \times 10^4$ )

-> Results on plasmoids growth have many similarities with simulations using coalescence setup: super-Alfvénic growth rate ~ 10 - 20  $t_A^{-1}$  following a quiescence phase with  $t_p \approx t_{tilt}$ , but higher S need to be explored (differences at high S)

-> Results partly agree with the theory of Comisso et al., with the non-power laws with S (differences due to ouflow effect at low S close to S<sub>c</sub>)

-> Results different from theory of Velli and coll. (growth rate remain Alfvénic) -> effect of the initial setup subject to ideal versus resistive instabilities ?

#### • Perspectives using tilt instability

- -> MHD plasmoid-dominated regime (longer time simulations are required) -> explain reco. rate !
- -> Higher S values are necessary for solar corona applications
- -> Beyond MHD: for  $S = 10^5$  tokamak, the smallest lengths scale ~ 1 mm ~ kinetic scales

# Magnetic reconnection with plasmoids !



# **Extra slides**

۲



# **Extra slides**



#### • Magnetic reconnection with plasmoids !



# **Extra slides**





# **Extra slides**





H. Baty - 18th EFTC conference, 7-10th october 2019, Ghent, Belgium